ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 12, 2011
Accepted March 5, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose

Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Korea
parkjk@knu.ac.kr
Korean Journal of Chemical Engineering, August 2011, 28(8), 1736-1743(8), 10.1007/s11814-011-0042-4
downloadDownload PDF

Abstract

Bacterial cellulose-chitosan composites (BC-Ch) were prepared in order to obtain the BC-Ch composites with improved physico-mechanical characteristics. BC sheets were immersed in a Ch solution hoping that the Ch penetrates into the BC sheet. Ch penetration was observed according to variations in temperature, operation mode and treatment time. The morphological changes due to enhanced penetration were observed through FE-SEM, FT-IR and XRD analysis. FE-SEM analyses confirmed the formation of three dimensional multilayered structures in BC-Ch, whose thickness increased with Ch penetration. The FT-IR analysis showed intermolecular hydrogen bonding interaction between the BC and Ch molecules. XRD results revealed a slight decrease in the crystallinity index of the BC-Ch composites compared to pure BC. The mechanical properties, water holding capacity (WHC) and water release rate (WRR) of the BC-Ch composites were significantly improved compared to pure BC. The superior mechanical properties, WHC and water release rate would make the BC-Ch composites suitable for wound dressing and other biomedical applications.

References

Chien LJ, Chen HT, Yang PF, Lee CK, Biotechnol. Prog., 22(6), 1598 (2006)
Sokolnicki AM, Fisher RJ, Harrah TP, Kaplan DL, J. Membr. Sci., 272(1-2), 15 (2006)
Shezad O, Khan S, Khan T, Park JK, Korean J. Chem. Eng., 26(6), 1689 (2009)
Ross P, Mayer R, Benziman M, Microbiol. Rev., 55, 35 (1991)
Song HJ, Li H, Seo JH, Kim MJ, Kim SJ, Korean J. Chem. Eng., 26(1), 141 (2009)
Cannon RE, Anderson SM, Microbiol., 17, 435 (1991)
Choi CN, Song HJ, Kim MJ, Chang MH, Kim SJ, Korean J. Chem. Eng., 22, 1598 (2009)
Fontana JD, De Souza AM, Fontana CK, Torriani IL, Biochem. Biotechnol., 24, 253 (1990)
Farah SFX, US Patent 4 (1990)
Ciechanska D, FIBRES & TEXTILES in Eastern Europe., 12, 48 (2004)
Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C, J. Polym.Res., DOI: 10.1007/s10965-010-9470-9.
Hirano S, Seino H, Akiyama I, Nonaka I, Chitosan: a biocompatible material for oral and intravenous administrationIn: Gebelein, Dunn RL (Eds.), Progress in Biomedical Polymers, Plenum Press, New York (1990)
Takeuchi H, Yamamoto H, Niwa T, Hino T, Kawashima Y, Pharm. Res., 13, 896 (1996)
Phisalaphong M, Jatupaiboon N, Carbohydr. Polym., 74, 482 (2008)
Singh KD, Alok RR, Macromol. Chem. Phys., 40, 69 (2000)
Xia W, Liu P, Zhang J, Chen J, Food Hydrocolloids., 25, 170 (2010)
Dufresne A, Molecules., 15, 4111 (2010)
Tischer PCSF, Sierakowski MR, Westfahl H, Tischer CA, Biomacromolecules, 11(5), 1217 (2010)
Shezad O, Khan S, Khan T, Park JK, Carbohydr. Polym., 82, 173 (2010)
Iguchi M, Yamanaka S, Budhiono A, J. Mater. Sci., 35(2), 261 (2000)
Park JK, Khan T, Jung JY, Bacterial cellulose. In Phillips GO, Williams PA (Eds.), Handbook of hydrocolloids (2nd Ed., pp. 724-739), Cambridge, UK: Woodhead Publishing Limited (2009)
Liang WZ, Yuan JY, Yil S, Cong DL, Chen YY, Jia SR, Zhou YL, Bioinformatics and Biomedical Eng., 1 (2009)
Yamada Y, Hoshino K, Ishikawa T, Biosci. Biotechnol. Biochem., 61, 1244 (1997)
Yang L, Hsiao WW, Chen P, J. Membr. Sci., 197(1-2), 185 (2002)
Socrates G, Infrared and raman characteristics group frequencies, Third addition, John Willey and Sons, Ltd., England.
Segal L, Creely J, Martin A, Conrad C, Text. Res. J., 29, 786 (1959)
Wada M, Okano T, Cellulose., 4, 221 (1997)
Cheng KC, Catchmark JM, Demirci A, Cellulose., 16, 1033 (2009)
Gwon HJ, Lim YM, An SJ, Youn MH, Han SH, Chang HN, Nho YC, Korean J. Chem. Eng., 26(6), 1686 (2009)
Shah N, Ha JH, Park JK, Biotechonol. Bioprocess Eng., 15, 110 (2010)
Nada AMA, El-Sakhawy M, Kamel S, Eid MAM, Adel AM, Egypt. J. Solids., 28 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로