Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 24, 2010
Accepted January 27, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Biomineralization of calcium carbonate by adding aspartic acid and lysozyme
Department of Chemical Engineering, Chungnam National University, 220, Gung-dong, Yuseong-gu, Daejeon 305-764, Korea
ihkim@cnu.ac.kr
Korean Journal of Chemical Engineering, August 2011, 28(8), 1749-1753(5), 10.1007/s11814-011-0022-8
Download PDF
Abstract
Calcium carbonate is one of the most abundant materials present in nature. Crystal structures of CaCO3 become three polymorphic modifications, namely calcite, aragonite and vaterite. Polymorphic modifications are mediated by adding aspartic acid (Asp) and lysozyme. Lysozyme, which is a major component of egg white proteins, has influenced the calcification of avian eggshells. The influence of Asp and lysozyme on the crystallization of CaCO3 was_x000D_
investigated by adding these additives and calcium chloride solution into sodium carbonate solution in a crystallization vessel. CaCO3 crystals were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectrometry (FT-IR). XRD was used to select the intensities and crystal structure of specific calcium carbonate. SEM was employed for the analysis of the morphology of the precipitation_x000D_
and particle size. Two kinds of crystals were identified by FT-IR spectrum. Hexagonal crystals of vaterite were affected by the Asp in the crystallization solution. However, rhombohedral crystals of calcite by lysozyme were formed without any sign of vaterite.
Keywords
References
Shivkumara C, Singh P, Gupta A, Hegade MS, Mater. Res. Bull., 41, 1455 (2006)
Tamura K, Tsuge H, Chem. Eng. Sci., 61(17), 5818 (2006)
Sun X, Zhou Y, Ren J, Cui F, Li H, Appl. Phys., 7, 75 (2007)
Bentov S, Weil S, Glazer L, Sagi A, Berman A, J. Struct. Biol., 171(2), 207 (2010)
Gago-Duport L, Briones MJI, Rodriguez JB, Covelo B, J. Struct. Biol., 162(3), 422 (2008)
Faatz M, Grohn F, Wegner G, Mater. Sci. Eng., 25(2), 153 (2005)
Beck R, Andreassen J, Cryst. Growth., 3112(15), 2226 (2010)
Jung WM, Kang SH, Kim WS, Choi CK, Chem. Eng. Sci., 55(4), 733 (2000)
Kang SH, Hirasawa I, Kim WS, Choi CK, J. Colloid Interface Sci., 288(2), 496 (2005)
Hao W, Qiang S, Ying Z, Wang DJ, Xu DF, J. Cryst. Growth, 260(3-4), 545 (2004)
Kawano J, Shimobayashi N, Kitamura M, Shinoda K, Aikawa N, J. Cryst. Growth, 237, 419 (2002)
Li Y, Wiliana T, Tam KC, Mater. Res. Bull., 42(5), 820 (2007)
Hadiko G, Han YS, Fuji M, Takahashi M, Mater. Lett., 59(19), 25192 (2005)
Han YS, Hadiko G, Fuji M, Takahashi M, J. Cryst. Growth, 289(1), 269 (2006)
Zhao D, Zhu T, Li F, Ruan Q, Zhang S, Zhang L, Xu D, Mater. Res. Bull., 45(1), 80 (2010)
Aizenberg J, Albeck S, Weiner S, Addadi L, J. Cryst. Growth., 142(1), 156 (1994)
Wentao H, Qingling F, Mater. Sci. Eng., 26(4), 644 (2006)
Dickinson SR, Henderson GE, McGrath KM, J. Cryst. Growth, 244(3-4), 369 (2002)
Hu Y, Ma Y, Zhou Y, Nie F, Duan X, Pei C, J. Cryst. Growth., 321(10), 1741 (2010)
Frenandez G, Castro E, J. Food Eng., 92(1), 112 (2009)
Lukeman PS, Sherman WB, Micheel C, Alivisatos AP, Seeman NC, Biophys. J., 95(1), 3340 (2008)
Kim JH, Kim JM, Kim WS, Kim IH, Korean Chem. Eng. Res., 47(2), 213 (2009)
Kim JH, Song SM, Kim JM, Kim WS, Kim IH, Korean J. Chem. Eng., 27(5), 1535 (2010)
Tamura K, Tsuge H, Chem. Eng. Sci., 61(17), 5818 (2006)
Sun X, Zhou Y, Ren J, Cui F, Li H, Appl. Phys., 7, 75 (2007)
Bentov S, Weil S, Glazer L, Sagi A, Berman A, J. Struct. Biol., 171(2), 207 (2010)
Gago-Duport L, Briones MJI, Rodriguez JB, Covelo B, J. Struct. Biol., 162(3), 422 (2008)
Faatz M, Grohn F, Wegner G, Mater. Sci. Eng., 25(2), 153 (2005)
Beck R, Andreassen J, Cryst. Growth., 3112(15), 2226 (2010)
Jung WM, Kang SH, Kim WS, Choi CK, Chem. Eng. Sci., 55(4), 733 (2000)
Kang SH, Hirasawa I, Kim WS, Choi CK, J. Colloid Interface Sci., 288(2), 496 (2005)
Hao W, Qiang S, Ying Z, Wang DJ, Xu DF, J. Cryst. Growth, 260(3-4), 545 (2004)
Kawano J, Shimobayashi N, Kitamura M, Shinoda K, Aikawa N, J. Cryst. Growth, 237, 419 (2002)
Li Y, Wiliana T, Tam KC, Mater. Res. Bull., 42(5), 820 (2007)
Hadiko G, Han YS, Fuji M, Takahashi M, Mater. Lett., 59(19), 25192 (2005)
Han YS, Hadiko G, Fuji M, Takahashi M, J. Cryst. Growth, 289(1), 269 (2006)
Zhao D, Zhu T, Li F, Ruan Q, Zhang S, Zhang L, Xu D, Mater. Res. Bull., 45(1), 80 (2010)
Aizenberg J, Albeck S, Weiner S, Addadi L, J. Cryst. Growth., 142(1), 156 (1994)
Wentao H, Qingling F, Mater. Sci. Eng., 26(4), 644 (2006)
Dickinson SR, Henderson GE, McGrath KM, J. Cryst. Growth, 244(3-4), 369 (2002)
Hu Y, Ma Y, Zhou Y, Nie F, Duan X, Pei C, J. Cryst. Growth., 321(10), 1741 (2010)
Frenandez G, Castro E, J. Food Eng., 92(1), 112 (2009)
Lukeman PS, Sherman WB, Micheel C, Alivisatos AP, Seeman NC, Biophys. J., 95(1), 3340 (2008)
Kim JH, Kim JM, Kim WS, Kim IH, Korean Chem. Eng. Res., 47(2), 213 (2009)
Kim JH, Song SM, Kim JM, Kim WS, Kim IH, Korean J. Chem. Eng., 27(5), 1535 (2010)