Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 7, 2011
Accepted May 10, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Conductive chitosan/multi walled carbon nanotubes electrospun nanofiber feasibility
University of Guilan, P. O. Box 3756, Rasht 41635, Iran
Korean Journal of Chemical Engineering, January 2012, 29(1), 111-119(9), 10.1007/s11814-011-0129-y
Download PDF
Abstract
The current study focuses on the electrospinning of chitosan (CHT)/multi walled carbon nanotubes (MWNTs) composite nanofiber using a highly stable dispersion. The acetic acid (1-100%) and trifluoroacetic acid/dichloromethane (TFA/DCM 70 : 30) was tested as solvent, and the TFA/DCM (70 : 30) is most preferred for fiber formation process with acceptable electrospinnability. Moreover, a new protocol was used to establish proper technique for preparation of electrospinning solution. FT-IR spectroscopy utilized to infer the extent of interaction between CHT polymer chain and MWNT filaments. A quite simple technique was employed to show the stability of electrospinning solution before nanofiber formation process. Scanning electronic microscope (SEM) was employed to show the influence of spinning parameters on surface morphology of electrospun fiber. Under optimized condition, homogeneous and beadfree CHT/MWNTs nanofibers and known physical characteristics were prepared. The formation of conducting nanofibers based on CHT nanocomposites can be considered as a significant improvement in electrospinning of CHT/CNT dispersion. The direct outcome of the current study includes the homogeneous CHT/MWNTs nanofibers with an average diameter of 275 nm and a conductivity of 9×10^(-5) S/cm. These results are extremely important for further investigation regarding biomedical applications.
References
Agarwal S, Wendorff JH, Greiner A, Polymer, 49(26), 5603 (2008)
Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI, Biomaterials., 26, 5999 (2005)
Zeng J, Yang L, Liang Q, Zhang X, Guan H, Xu X, Chen X, J. Control. Release., 105, 43 (2005)
Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N, J. Biomed. Mat. Res. B., 67B, 375 (2003)
Taylor GI, Proc. Roy. Soc. London., 313, 453 (1969)
Doshi J, Reneker DH, J. Electrostat., 35, 151 (1995)
Li D, Xia YN, Adv. Mater., 16(14), 1151 (2004)
Ziabari M, Mottaghitalab V, Haghi AK, Korean J. Chem. Eng., 25(4), 923 (2008)
Tan SH, Inai R, Kotaki M, Ramakrishna S, Polymer, 46(16), 6128 (2005)
Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F, Polymer, 44(19), 5721 (2003)
Matthews JA, Wnek GE, Simpson DG, Bowlin GL, Biomacromolecules, 3(2), 232 (2002)
McManus MC, Boland ED, Simpson DG, Barnes CP, Bowlin GL, J. Biomed. Mater. Res. A., 81A, 299 (2007)
Huang ZM, Zhang YZ, Ramakrishna S, Lim CT, Polymer, 45(15), 5361 (2004)
Zhang X, Reagan MR, Kaplan DL, Adv. Drug. Del. Rev., 61, 988 (2009)
Noh HK, Lee SW, Kim JM, Oh JE, Kim KH, Chung CP, Choi SC, Park WH, Min BM, Biomaterials., 27, 3934 (2006)
Ohkawa K, Minato KI, Kumagai G, Hayashi S, Yamamoto H, Biomacromolecules, 7(11), 3291 (2006)
Agboh OC, Qin Y, Polym. Adv. Technol., 8, 355 (1997)
Rinaudo M, Prog. Polym. Sci., 31, 603 (2006)
Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A, Curr. Chem. Biol., 3, 203 (2009)
Neamnark A, Rujiravanit R, Supaphol P, Carbohydr. Polym., 66, 298 (2006)
Duan B, Dong C, Yuan X, Yao K, J. Biomater. Sci. Polym. Ed., 15, 797 (2004)
Jia YT, Gong J, Gu XH, Kim HY, Dong J, Shen XY, Carbohydr. Polym., 67, 403 (2007)
Homayoni H, Ravandi SAH, Valizadeh M, Carbohydr. Polym., 77, 656 (2009)
Geng X, Kwon OH, Jang J, Biomaterials., 26, 5427 (2005)
Torres-Giner S, Ocio MJ, Lagaron JM, Anglais., 8, 303 (2008)
De Vrieze S, Westbroek P, Van Camp T, Van Langenhove L, J. Mater. Sci., 42(19), 8029 (2007)
Ohkawa K, Cha DI, Kim H, Nishida A, Yamamoto H, Macromol. Rapid Commun., 25(18), 1600 (2004)
Iijima S, Nature., 354, 56 (1991)
Esawi AMK, Farag MM, Mater. Design., 28, 2394 (2007)
Feng W, Wu Z, Li Y, Feng Y, Yuan X, Nanotechnology., 19, 105707 (2008)
Liao H, Qi R, Shen M, Cao X, Guo R, Zhang Y, Shi X, Colloid. Surface. B., doi:10.1016/j.colsurfb.2011.02.010 (2011)
Baek SH, Kim B, Suh KD, Colloid. Surface. A., 316, 292 (2008)
Liu YL, Chen WH, Chang YH, Carbohydr. Polym., 76, 232 (2009)
Tkac J, Whittaker JW, Ruzgas T, Biosens. Bioelectron., 22, 1820 (2007)
Spinks GM, Geoffrey M, Shin SR, Wallace GG, Whitten PG, Kim SI, Kim SJ, Sensor. Actuat. B-Chem., 115, 678 (2006)
Zhang H, Wang ZG, Zhang ZN, Wu J, Zhang J, He HS, Adv. Mater., 19(5), 698 (2007)
Deitzel JM, Kleinmeyer J, Harris D, Tan NCB, Polymer, 42(1), 261 (2001)
Zhang S, Shim WS, Kim J, Mater. Design., 30, 3659 (2009)
Li Y, Huang Z, Lu Y, Eur. Polym. J., 42, 1696 (2006)
Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI, Biomaterials., 26, 5999 (2005)
Zeng J, Yang L, Liang Q, Zhang X, Guan H, Xu X, Chen X, J. Control. Release., 105, 43 (2005)
Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N, J. Biomed. Mat. Res. B., 67B, 375 (2003)
Taylor GI, Proc. Roy. Soc. London., 313, 453 (1969)
Doshi J, Reneker DH, J. Electrostat., 35, 151 (1995)
Li D, Xia YN, Adv. Mater., 16(14), 1151 (2004)
Ziabari M, Mottaghitalab V, Haghi AK, Korean J. Chem. Eng., 25(4), 923 (2008)
Tan SH, Inai R, Kotaki M, Ramakrishna S, Polymer, 46(16), 6128 (2005)
Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F, Polymer, 44(19), 5721 (2003)
Matthews JA, Wnek GE, Simpson DG, Bowlin GL, Biomacromolecules, 3(2), 232 (2002)
McManus MC, Boland ED, Simpson DG, Barnes CP, Bowlin GL, J. Biomed. Mater. Res. A., 81A, 299 (2007)
Huang ZM, Zhang YZ, Ramakrishna S, Lim CT, Polymer, 45(15), 5361 (2004)
Zhang X, Reagan MR, Kaplan DL, Adv. Drug. Del. Rev., 61, 988 (2009)
Noh HK, Lee SW, Kim JM, Oh JE, Kim KH, Chung CP, Choi SC, Park WH, Min BM, Biomaterials., 27, 3934 (2006)
Ohkawa K, Minato KI, Kumagai G, Hayashi S, Yamamoto H, Biomacromolecules, 7(11), 3291 (2006)
Agboh OC, Qin Y, Polym. Adv. Technol., 8, 355 (1997)
Rinaudo M, Prog. Polym. Sci., 31, 603 (2006)
Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A, Curr. Chem. Biol., 3, 203 (2009)
Neamnark A, Rujiravanit R, Supaphol P, Carbohydr. Polym., 66, 298 (2006)
Duan B, Dong C, Yuan X, Yao K, J. Biomater. Sci. Polym. Ed., 15, 797 (2004)
Jia YT, Gong J, Gu XH, Kim HY, Dong J, Shen XY, Carbohydr. Polym., 67, 403 (2007)
Homayoni H, Ravandi SAH, Valizadeh M, Carbohydr. Polym., 77, 656 (2009)
Geng X, Kwon OH, Jang J, Biomaterials., 26, 5427 (2005)
Torres-Giner S, Ocio MJ, Lagaron JM, Anglais., 8, 303 (2008)
De Vrieze S, Westbroek P, Van Camp T, Van Langenhove L, J. Mater. Sci., 42(19), 8029 (2007)
Ohkawa K, Cha DI, Kim H, Nishida A, Yamamoto H, Macromol. Rapid Commun., 25(18), 1600 (2004)
Iijima S, Nature., 354, 56 (1991)
Esawi AMK, Farag MM, Mater. Design., 28, 2394 (2007)
Feng W, Wu Z, Li Y, Feng Y, Yuan X, Nanotechnology., 19, 105707 (2008)
Liao H, Qi R, Shen M, Cao X, Guo R, Zhang Y, Shi X, Colloid. Surface. B., doi:10.1016/j.colsurfb.2011.02.010 (2011)
Baek SH, Kim B, Suh KD, Colloid. Surface. A., 316, 292 (2008)
Liu YL, Chen WH, Chang YH, Carbohydr. Polym., 76, 232 (2009)
Tkac J, Whittaker JW, Ruzgas T, Biosens. Bioelectron., 22, 1820 (2007)
Spinks GM, Geoffrey M, Shin SR, Wallace GG, Whitten PG, Kim SI, Kim SJ, Sensor. Actuat. B-Chem., 115, 678 (2006)
Zhang H, Wang ZG, Zhang ZN, Wu J, Zhang J, He HS, Adv. Mater., 19(5), 698 (2007)
Deitzel JM, Kleinmeyer J, Harris D, Tan NCB, Polymer, 42(1), 261 (2001)
Zhang S, Shim WS, Kim J, Mater. Design., 30, 3659 (2009)
Li Y, Huang Z, Lu Y, Eur. Polym. J., 42, 1696 (2006)