ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 28, 2011
Accepted May 9, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Pd-Cu alloy membrane deposited on alumina modified porous nickel support (PNS) for hydrogen separation at high pressure

Energy Materials Center, Korea Institute of Energy Research (KIER), 102 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Korea 1Department of Advanced Materials Engineering, Kyonggi University, Suwon 442-760, Korea
h2membrane@kier.re.kr
Korean Journal of Chemical Engineering, January 2012, 29(1), 59-63(5), 10.1007/s11814-011-0127-0
downloadDownload PDF

Abstract

This study reports on the hydrogen permeation properties of Pd-Cu alloy membranes at high pressures. A 7 μm thick Pd-Cu alloy membrane was prepared on an alumina-modified porous nickel support (PNS) by our developed magnetron sputtering and Cu-reflow method at 700℃ for 2 hours. The membrane was mounted in a stainless steel permeation cell with a gold-plated stainless steel O-ring. Helium leak testing confirmed that the membrane and membrane module were free of defects. Permeation tests were then conducted using hydrogen at temperatures in the range from 678 to 816 K with a transmembrane pressure difference of 1-20 bars, which showed that the membrane had a hydrogen permeation flux of 1.06 mol m^(-2) s^(-1) at a temperature of 816 K and a pressure difference of 20 bars. EDX analysis was carried out after hydrogen permeation test at 816 K and showed that there was no intermetallic diffusion between the Pd-Cu layer and PNS because the alumina layer inhibited it effectively.

References

Ryi SK, The study of Pd-Cu-Ni ternary alloyed hydrogen membranes deposited on porous nickel supports, Doctoral Thesis, Korea University (2007)
Ryi SK, Xu N, Li A, Lim CJ, Grace JR, Int. J. Hydrog.Energy., 35, 2328 (2010)
Hydrogen from Coal Program, Research, Development, and Demonstration Plan for the period 2009 through 2016, U.S. Department of Energy (2009)
Ryi SK, Park JS, Kim SH, Kim DW, Cho KI, J. Membr. Sci., 318(1-2), 346 (2008)
Ryi SK, Park JS, Kim DK, Kim TH, Kim SH, J. Membr. Sci., 339(1-2), 189 (2009)
Ryi SK, Park JS, Kim SH, Kim DW, Woo BI, Grace JR, Korean J. Chem. Eng., 27(1), 235 (2010)
Ryi SK, Park JS, Kim SH, Cho SH, Park JS, Kim DW, J. Membr. Sci., 279(1-2), 439 (2006)
Ryi SK, Park JS, Kim SH, Cho SH, Kim DW, Um KY, Sep. Purif. Technol., 50(1), 82 (2006)
Katsnel’son AA, Knyazeva MM, Revkevich GP, Phys. Solid State., 38, 1132 (1997)
Okazaki J, Tanaka DAP, Tanco MAL, Wakui Y, Mizukami F, Suzuki TM, J. Membr. Sci., 282(1-2), 370 (2006)
Uemiya S, Sep. Purif. Methods, 28(1), 51 (1999)
Mardilovich IP, Engwall E, Ma YH, Desalination, 144(1-3), 85 (2002)
Ryi SK, Li A, Lim CJ, Grace JR, Int. J. Hydrog. Energy., 36, 9335 (2011)
Li A, Grace JR, Lim CJ, J. Membr. Sci., 298(1-2), 175 (2007)
Tucho WM, Venvik HJ, Stange M, Walmsley JC, Holmestad R, Bredesen R, Sep. Purif. Technol., 68(3), 403 (2009)
Kim DW, Kim HM, Korea Patent 0,058,667 (1999)
Lee SY, Kim DW, Rha SK, Park CO, Park HH, J. Vac. Sci. Technol. B, 16(5), 2902 (1998)
Hatlevik O, Gade SK, Keeling MK, Thoen PM, Davidson AP, Way JD, Sep. Purif. Technol., 73(1), 59 (2010)
Ward TL, Dao T, J. Membr. Sci., 153(2), 211 (1999)
Souleimanova RS, Mukasyan AS, Varma A, AIChE J., 48(2), 262 (2002)
Li A, Grace JR, Lim CJ, J. Membr. Sci., 306(1-2), 159 (2007)
Tong JH, Su LL, Haraya K, Suda H, J. Membr. Sci., 310(1-2), 93 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로