Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 12, 2011
Accepted May 27, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Enhanced production of cellobiose dehydrogenase and β-glucosidase by Phanerochaete chrysosporium
Department of Chemical and Biological Engineering, Korea University, 5, Anam-dong, Sungbuk-gu, Seoul 136-701, Korea 1School of Life Science and Biotechnology, Korea University, 5, Anam-dong, Sungbuk-gu, Seoul 136-701, Korea 2Department of Chemical Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701, Korea
kimsw@korea.ac.kr
Korean Journal of Chemical Engineering, January 2012, 29(1), 77-81(5), 10.1007/s11814-011-0144-z
Download PDF
Abstract
The production of cellobiose dehydrogenase (CDH) and β-glucosidase by Phanerochaete chrysosporium ATCC 32629 was assessed during submerged fermentation. The maximum concentrations of CDH and β-glucosidase were obtained using rice straw as the carbon source. Organic nitrogen sources were more effective in enzyme production than inorganic nitrogen sources. Corn steep liquor (CSL) for CDH production and soy bean meal (SBM) for β-glucosidase production were the most appropriate organic nitrogen sources. Using optimum medium obtained by response surface methodology (RSM), the maximum concentrations of CDH and β-glucosidase achieved in the stirred-tank reactor (STR) were 204 U/L and 140 U/L, respectively. CDH productivity (22.7 U/L·day) was the highest at 9 days.
Keywords
References
Mansfield SD, Jong ED, Saddler JN, Appl. Environ. Microbiol., 63, 3804 (1997)
Henriksson G, Sild V, Szabo IJ, Pettersson G, Johansson G, Biochim. Biophys. Acta., 1383, 48 (1998)
Henriksson G, Johansson G, Pettersson G, J. Biotechnol., 78, 93 (2000)
Baminger U, Subramaniam SS, Renganathan V, Haltrich D, Appl. Environ. Microbiol., 67, 1766 (2001)
Roy B, Dumonceaux T, Koukoulas A, Archibald F, Appl. Environ. Microbiol., 62, 4417 (1996)
Bao WJ, Usha SN, Renganathan V, Arch. Biochem. Biophys., 300, 705 (1993)
Cameron MD, Aust SD, Enzyme Microb. Technol., 28(2-3), 129 (2001)
Westermark U, Eriksson KE, Acta Chem. Scand., B28, 209 (1974)
Eriksson KEL, Habu N, Samejima M, Enzyme Microb. Technol., 15, 1002 (1993)
Henriksson G, Ander P, Pettersson B, Pettersson G, Appl. Microbiol. Biotechnol., 42(5), 790 (1995)
Bao W, Renganathan V, Febs Lett., 302, 77 (1992)
Krusa M, Lennholm H, Henriksson G, Cell. Chem. Technol., 41, 105 (2008)
Bao W, Lymar E, Renganathan V, Appl. Microbiol. Biotechnol., 42(4), 642 (1994)
Baldrian P, Valaskova V, Fems Microbiol. Rev., 32, 501 (2008)
Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119 (2011)
Cui JD, Korean J. Chem. Eng., 27(1), 174 (2010)
Vazquez M, Martin AM, Biotechnol. Bioeng., 57(3), 314 (1998)
Murugesan S, Rajiv S, Thanapalan M, Korean J. Chem. Eng., 26(2), 364 (2009)
Park YS, Kang SW, Lee JS, Hong SI, Kim SW, Appl. Microbiol. Biotechnol., 58(6), 761 (2002)
Montgomery, Design and analysis of experiments (3rd Ed.), John Wiley & Sons, New York (1991)
Baminger U, Nidetzky B, Kulbe KD, Haltrich D, J. Microbiol. Methods., 35, 253 (1999)
Min BJ, Park YS, Kang SW, Song YS, Lee JH, Park C, Kim CW, Kim SW, Biotechnol. Bioprocess Eng., 12, 302 (2007)
Henriksson G, Sild V, Szabo IJ, Pettersson G, Johansson G, Biochim. Biophys. Acta., 1383, 48 (1998)
Henriksson G, Johansson G, Pettersson G, J. Biotechnol., 78, 93 (2000)
Baminger U, Subramaniam SS, Renganathan V, Haltrich D, Appl. Environ. Microbiol., 67, 1766 (2001)
Roy B, Dumonceaux T, Koukoulas A, Archibald F, Appl. Environ. Microbiol., 62, 4417 (1996)
Bao WJ, Usha SN, Renganathan V, Arch. Biochem. Biophys., 300, 705 (1993)
Cameron MD, Aust SD, Enzyme Microb. Technol., 28(2-3), 129 (2001)
Westermark U, Eriksson KE, Acta Chem. Scand., B28, 209 (1974)
Eriksson KEL, Habu N, Samejima M, Enzyme Microb. Technol., 15, 1002 (1993)
Henriksson G, Ander P, Pettersson B, Pettersson G, Appl. Microbiol. Biotechnol., 42(5), 790 (1995)
Bao W, Renganathan V, Febs Lett., 302, 77 (1992)
Krusa M, Lennholm H, Henriksson G, Cell. Chem. Technol., 41, 105 (2008)
Bao W, Lymar E, Renganathan V, Appl. Microbiol. Biotechnol., 42(4), 642 (1994)
Baldrian P, Valaskova V, Fems Microbiol. Rev., 32, 501 (2008)
Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119 (2011)
Cui JD, Korean J. Chem. Eng., 27(1), 174 (2010)
Vazquez M, Martin AM, Biotechnol. Bioeng., 57(3), 314 (1998)
Murugesan S, Rajiv S, Thanapalan M, Korean J. Chem. Eng., 26(2), 364 (2009)
Park YS, Kang SW, Lee JS, Hong SI, Kim SW, Appl. Microbiol. Biotechnol., 58(6), 761 (2002)
Montgomery, Design and analysis of experiments (3rd Ed.), John Wiley & Sons, New York (1991)
Baminger U, Nidetzky B, Kulbe KD, Haltrich D, J. Microbiol. Methods., 35, 253 (1999)
Min BJ, Park YS, Kang SW, Song YS, Lee JH, Park C, Kim CW, Kim SW, Biotechnol. Bioprocess Eng., 12, 302 (2007)