ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 26, 2011
Accepted January 19, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A study on thermal analysis of MgH2 powder made by hydriding chemical vapor deposition method

Department of Material Science & Engineering, Dong-A University, Hadan-dong, Sahagu, Busan 604-714, Korea
jshan@dau.ac.kr
Korean Journal of Chemical Engineering, October 2012, 29(10), 1336-1340(5), 10.1007/s11814-012-0008-1
downloadDownload PDF

Abstract

The desorption kinetics of Mg hydride made by the HCVD method was assessed by thermal analysis in order to study desorption behavior. Desorption kinetics was analyzed by the theoretical equation which was derived on the basis of a continuous moving boundary model. At various initial hydride wt% from 1.65 to 7.42, the sample was heated to 573 K at a rate of 1.0K/min. The starting temperature of evolution of hydrogen rises higher as the initial hydride wt% increases. The number of thermal desorption peaks corresponds to the occupation sites of hydrogen. As the heating rate was increased, the peak temperatures increased; the peak temperatures for heating rates 1, 2, 3 and 4 K/min were 667, 683, 690 and 698 K, respectively. The pressure range is 0.1 to 0.2 atm for measuring. The activation energy for the decomposition of Mg hydride made by HCVD method was 166 kJ/ mol.

References

Akiyama T, Isogai H, Yagi J, J. Alloys Compd., 252, L1 (1997)
Zhu C, Hayashi H, Saita I, Akiyama T, Int. J. Hydrog. Energy., 34, 283 (2009)
Zhu C, Sakaguchi N, Hosokai S, Watanabe S, Akiyama T, Int. J. Hydrog. Energy., 36, 3600 (2011)
Saita I, Toshima T, Tanda S, Akiyama T, J. Alloys Compd., 446, 80 (2007)
Hiroi S, Hosokai S, Akiyama T, Int. J. Hydrog.Energy., 36, 1442 (2011)
Konstanchuk I, Gerasimov K, Bobet JL, J. Alloys Compd., 509, S576 (2011)
Smith AW, Aranoff S, J. Phys. Chem., 62, 684 (1958)
Madey TE, Yates JT, Surface Science., 63, 203 (1977)
Rawat N, Gudyaka R, Kumar M, Joshi B, Santhanam KSV, J. Nanosci. Nanotechnol., 18, 2044 (2008)
Itoh H, Yoshinari O, Tanaka K, J. Alloys Compd., 231, 483 (1995)
Shim WG, Lee SG, Hwang MJ, Park KH, Kim SC, Moon H, J. Nanosci. Nanotechnol., 11, 1518 (2011)
Hiroi S, Hosokai S, Akiyama T, Int. J. Hydrog. Energy., 36, 1442 (2011)
Zhu C, Hayashi H, Saita I, Akiyama T, Int. J.Hydrog. Energy., 34, 283 (2009)
Han JS, Pezat M, Lee JY, J. Less-Comm. Met., 130, 395 (1987)
Kojima Y, Kawai Y, Haga T, J. Alloys Compd., 424, 294 (2006)
Zachariasen WH, Holly CE, Stamper JF, Acta Crystallogr., 16, 352 (1963)
Vigeholm B, Kjoiier J, Larson B, Pederson AS, Hydrogen Energy Progress., 5, 1455 (1984)
Han JS, Park KD, Kor. J. Met. Mater., 48, 1123 (2010)
Huot J, Liang G, Boily S, Van Neste A and Schulz R, J. Alloys Compd., 293, 495 (1999)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로