ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 8, 2012
Accepted April 13, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Computational study on the decomposition of tetraneopentyl zirconium for the chemical vapor deposition of zirconium carbide

Department of Chemical Engineering, Pukyong National University, Busan 608-739, Korea
Korean Journal of Chemical Engineering, October 2012, 29(10), 1438-1443(6), 10.1007/s11814-012-0050-z
downloadDownload PDF

Abstract

The overall gas phase decomposition mechanism of tetraenopentyl zirconium precursor (Zr[CH2C(CH3)3]4) for the chemical vapor deposition of zirconium carbide thin films was investigated by using computational thermochemistry. Density functional theory (DFT) and harmonic vibrational frequency calculation were used to generate thermodynamic properties at each reaction step, based on which thermodynamic or kinetic preference of a reaction pathway was evaluated. While the preference of γ-hydrogen abstraction of neopentane over α-hydrogen abstraction was confirmed in the initial stage of ZrNp4 decomposition, they turned out to be competing instead of the dominant preference of γ-hydrogen abstraction. Methane formation at three subsequent reaction steps was explained by β-methyl migration, and the following α-hydrogen abstraction of methane based on the suggestion that α- and γ-hydrogen abstractions of neopentane are competing kinetically in previous reaction steps. Computational thermochemistry showed a possibility as a general tool to anticipate the gas phase decomposition mechanism of a precursor in chemical vapor deposition.

References

Kieffer R, Proc. Intern. Symp. Reactive Solids., 1001 (1952)
Technical Publications, CERAO Incorporate, 7(2) (1997)
Aizawa T, T. Rep. National Inst. Res. Inorg. Mater., 81, 27 (1994)
Mackie WA, Hartman RL, Anderson MA, Davis PR, J. Vac. Sci. Technol. B, 12(2), 722 (1994)
Mackie WA, Xie TB, Matthews MR, Routh BP, Davis PR, J. Vac. Sci. Technol. B, 16(4), 2057 (1998)
Mackie WA, Xie TB, Davis PR, J. Vac. Sci. Technol. B, 17(2), 613 (1999)
Kang DH, Zhirnov VV, Wojak GJ, Sanwald RC, Park M, Hren JJ, Cuomo JJ, Mat. Res. Soc. Symp. Proc., 558, 563 (2000)
Spindt C, Holland CE, Schwoebel PR, SPIE Proc., 3955, 151 (2000)
Yater JE, Shih A, Katzer DS, Mat. Res. Soc. Symp. Proc., 558, 551 (2000)
Smith DC, Rubiano RR, Healy MD, Springer RW, Mat.Res. Soc. Symp. Proc., 282, 642 (1993)
Parmeter JE, Smith DC, Healy MD, J. Vac. Sci. Technol. A, 12(4), 2107 (1994)
Girolami GS, Jensen JA, Gozum JE, Pollina DM, Mat.Res. Soc. Symp. Proc., 121, 429 (1998)
Healy MD, Smith DC, Rubiano RR, Springer RW, Parmeter JE, Mat. Res. Soc. Symp. Proc., 327, 127 (1994)
Won YS, Kim YS, Varanasi VG, Kryliouk O, Anderson TJ, Sirimanne CT, McElwee-White L, J. Cryst. Growth, 304(2), 324 (2007)
Won YS, Varanasi VG, Kryliouk O, Anderson TJ, McElwee-White L, Perez RJ, J. Cryst. Growth, 307(2), 302 (2007)
Wu YD, Peng ZH, Chan KWK, Xiaozhan L, Tuinman AA, Xue Z, Organometallics., 18, 2081 (1999)
Wu YD, Peng ZH, Xue ZL, J. Am. Chem. Soc., 118(40), 9772 (1996)
Cheon J, Dubois LH, Girolami GS, J. Am. Chem. Soc., 119(29), 6814 (1997)
Gaussian 03, Revision B.04, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Rob MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Eds, Gaussian, Inc., Wallingford CT (2004)
Becke AD, J. Chem. Phys., 98, 1372 (1993)
Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ, J. Phys. Chem., 98(45), 11623 (1994)
Hajela S, Bercaw JE, Organometallics., 13, 1147 (1994)
Horton AD, Organometallics., 15, 2675 (1996)
Lin M, Spivak GJ, Baird MC, Organometallics., 21, 2350 (2002)
Chirik PJ, Dalleska NF, Henling LM, Bercaw JE, Organometallics., 24, 2789 (2005)
Beswick CL, Marks TJ, J. Am. Chem. Soc., 122(42), 10358 (2000)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로