ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 28, 2012
Accepted May 19, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Modeling of P-ρ-T properties of ionic liquids using ISM equation of state: Application to pure component and binary mixtures

Department of Chemistry, Shiraz University of Technology, Shiraz 71555-313, Iran 1Department of Chemistry, Shiraz University, Shiraz 71454, Iran
Korean Journal of Chemical Engineering, November 2012, 29(11), 1628-1637(10), 10.1007/s11814-012-0070-8
downloadDownload PDF

Abstract

Ihm-Song-Mason (ISM) equation of state (EOS) has been previously employed for modeling the volumetric properties of ionic liquids (ILs). The novelty of the present work is in replacing the macroscopic scaling constants with microscopic ones. Three temperature-dependent parameters that appeared in the EOS, which are universal functions of the reduced temperature, were determined using these new microscopic scaling constants. These parameters are the_x000D_ effective hard-sphere diameter (σ) and the non-bonded interaction energy between two spheres (ε). The present EOS is evaluated by examination of 3997 experimental density data points for five classes of ILs. The average absolute deviation (AAD) of the calculated densities from literature values was found to be of the order of 0.38%. Our calculations involved a broad range of temperature from 293 K to 472 K and pressures from 0.1MPa up to 200MPa. Another aspect of the present study is the extension of the proposed EOS to predict density of binary mixtures involving IL+ water and IL+ IL. In the case of binary mixtures, 898 data points were taken to assess the capability of the EOS. The overall AAD of the calculated mixture densities from the literature ones was within 0.43%.

References

Garcia B, Lavallee S, Perron G, Michot C, Armand M, Electrochim. Acta, 49(26), 4583 (2004)
Sato T, Masuda G, Takagi K, Electrochim. Acta, 49(21), 3603 (2004)
Earle MJ, Seddon KR, Pure. Appl. Chem., 72, 1391 (2000)
Wu B, Reddy RG, Rogers RD, Proceedings of Solar Forum, 2001, Solar Energy: The Power to Choose, April 21-25, ASME, Washington, DC (2001)
Wang JF, Li ZB, Li CX, Wang ZH, Ind. Eng. Chem. Res., 49(9), 4420 (2010)
Shen C, Li CX, Li XM, Lu YZ, Muhammad Y, Chem. Eng. Sci., 66(12), 2690 (2011)
Machida H, Sato Y, Smith RL, Fluid Phase Equilib., 297(2), 205 (2010)
Abildskov J, Ellegaard MD, O’Connell JP, Fluid Phase Equilib., 286, 95 (2009)
Abildskov J, Ellegaard MD, O'Connell JP, Fluid Phase Equilib., 295(2), 215 (2010)
Abildskov J, Ellegaard MD, O'Connell JP, J. Supercrit. Fluids, 55(2), 833 (2010)
Palomar J, Ferro VR, Torrecilla JS, Rodriguez F, Ind. Eng. Chem. Res., 46(18), 6041 (2007)
Trohalaki S, Pachter R, Drake GW, Hawkins T, Energy Fuels, 19(1), 279 (2005)
Valderrama JO, Reategui A, Rojas RE, Ind. Eng. Chem. Res., 48(6), 3254 (2009)
Aparicio S, Atilhan M, Karadas F, Ind. Eng. Chem. Res., 49(20), 9580 (2010)
Kim YS, Choi WY, Jang JH, Yoo KP, Lee CS, Fluid Phase Equilib., 228-229, 439 (2005)
Song Y, Mason EA, J. Chem. Phys., 91, 7840 (1989)
Hosseini SM, Sharafi Z, Ionics., 17, 511 (2011)
Hosseini SM, Moghadasi J, Papari MM, Fadaie-Nobandegani F, Ind. Eng. Chem. Res., 51, 758 (2012)
Hosseini SM, Ionics., 16, 571 (2010)
Hosseini SM, Moghadasi J, Papari MM, Ionics., 16, 757 (2010)
Hosseini SM, Moghadasi J, Papari MM, Fadaie-Nobandegani F, J. Mol. Liq., 160, 67 (2011)
Valderrama JO, Robles PA, Ind. Eng. Chem. Res., 46(4), 1338 (2007)
Valderrama JO, Rojas RE, Ind. Eng. Chem. Res., 48(14), 6890 (2009)
Gardas RL, Coutinho JAP, Fluid Phase Equilib., 263(1), 26 (2008)
Jacquemin J, Nancarrow P, Rooney DW, Gomes MFC, Husson P, Majer V, Padua AAH, Hardacre C, J. Chem. Eng. Data, 53(9), 2133 (2008)
Jacquemin J, Ge R, Nancarrow P, Rooney DW, Gomes MFC, Padua AAH, Hardacre C, J. Chem. Eng. Data, 53(3), 716 (2008)
Ye CF, Shreeve JM, J. Phys. Chem. A, 111(8), 1456 (2007)
Tao FM, Mason EA, Int. J. Thermophys., 13, 1053 (1992)
Boushehri A, Mason EA, Int. J. Thermophys., 14, 685 (1993)
Ghatee MH, Boushehri A, Int. J. Thermophys., 17, 945 (1996)
Mehdipour N, Boushehri A, Int. J. Thermophys., 19, 331 (1998)
Eslami H, Int. J. Thermophys., 21, 1123 (2000)
Sheikh S, Papari MM, Boushehri A, Ind. Eng. Chem. Res., 41(13), 3274 (2002)
Papari MM, Razavizadeh A, Mokhberi F, Boushehri A, Ind.Eng. Chem. Res., 4, 3802 (2003)
Song Y, J. Chem. Phys., 92, 2683 (1990)
Easun TL, Alsindi WZ, Towrie M, Ronayne KL, Sun XZ, Ward MD, George MW, Inorg. Chem., 47(12), 5071 (2008)
Goncalves FAMM, Costa CSMF, Ferreira CE, Bernardo JCS, Johnson I, Fonseca IMA, Ferreira AGM, J. Chem. Thermodyn., 43(6), 914 (2011)
de Azevedo RG, Esperanca JMSS, Szydlowski J, Visak ZP, Pires PF, Guedes HJR, Rebelo LPN, J. Chem. Thermodyn., 37(9), 888 (2005)
Gardas RL, Freire MG, Carvalho PJ, Marrucho IM, Fonseca IMA, Ferreira AGM, Coutinho JAP, J. Chem. Eng. Data, 52(5), 1881 (2007)
Esperanca JMSS, Visak ZP, Plechkova NV, Seddon KR, Guedes HJR, Rebelo LPN, J. Chem. Eng. Data, 51(6), 2009 (2006)
Esperanca JMSS, Guedes HJR, Lopes JNC, Rebelo LPN, J. Chem. Eng. Data, 53(3), 867 (2008)
Gardas RL, Costa HF, Freire MG, Carvalho PJ, Marrucho IM, Fonseca IMA, Ferreira AGM, Coutinho JAP, J. Chem. Eng. Data, 53(3), 805 (2008)
Esperanca JMSS, Guedes HJR, Blesic M, Rebelo LPN, J. Chem. Eng. Data, 51(1), 237 (2006)
Gardas RL, Freire MG, Carvalho PJ, Marrucho IM, Fonseca IMA, Ferreira AGM, Coutinho JAP, J. Chem. Eng. Data, 52(1), 80 (2007)
Taguchi R, Machida H, Sato Y, Smith RL, J. Chem. Eng. Data, 54(1), 22 (2009)
Tome LIN, Carvalho PJ, Freire MG, Marrucho IM, Fonseca IMA, Ferreira AGM, Coutinho JAP, Gardas RL, J. Chem. Eng. Data, 53(8), 1914 (2008)
Machida H, Sato Y, Smith RL, Fluid Phase Equilib., 264(1-2), 147 (2008)
Zhou Q, Wang LS, Chen HP, J. Chem. Eng. Data, 51(3), 905 (2006)
de Azevedo RG, Esperanca JMSS, Najdanovic-Visak V, Visak ZP, Guedes HJR, da Ponte MN, Rebelo LPN, J. Chem. Eng. Data, 50(3), 997 (2005)
Tomida D, Kumagai A, Qiao K, Yokoyama C, Int. J. Thermophys., 27, 39 (2006)
Jacquemin J, Husson P, Mayer V, Cibulka I, J. Chem. Eng. Data, 52(6), 2204 (2007)
Hofman T, Goldon A, Nevines A, Letcher TM, J. Chem. Thermodyn., 40(4), 580 (2008)
Zhang SJ, Li M, Chen HP, Wang JF, Zhang JM, Zhang ML, J. Chem. Eng. Data, 49(4), 760 (2004)
Ge ML, Zhao RS, Yi YF, Zhang Q, Wang LS, J. Chem. Eng. Data, 53(10), 2408 (2008)
Carvalho PJ, Regueira T, Santos LMNBF, Fernandez J, Coutinho JAP, J. Chem. Eng. Data, 55(2), 645 (2010)
Navia P, Troncoso J, Romani L, J. Chem. Eng. Data, 52(4), 1369 (2007)
Lopes JNC, Cordeiro TC, Esperanca JMSS, Guedes HJR, Huq S, Rebelo LPN, Seddon KR, J. Phys. Chem. B., 10, 3519 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로