Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 28, 2012
Accepted May 26, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Extraction of copper by leaching of electrostatic precipitator dust and two step removal of arsenic from the leach liquor
Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
barsha.dash@gmail.com
Korean Journal of Chemical Engineering, November 2012, 29(11), 1638-1642(5), 10.1007/s11814-012-0081-5
Download PDF
Abstract
The paper deals with the extraction of copper from the deposited material of the liner of the electrostatic precipitator (ESP) of the copper smelter plant. These precipitates of ESP liner (ESP dust) generally contain mixed phases of copper and arsenic. An attempt is made to extract copper from ESP dust, subsequently removing arsenic from the leach liquor. The ESP dust containing paramelaconite (6CuO·Cu2O), α-domeykite (Cu3As), metadomeykite (Cu3As), enargite (Cu3AsS4) and (Cu,Fe) SO4·H2O is not a naturally occurring geological mineral; thus comparatively high acid concentration and temperature are required to break the matrix of this mixed material so as to liberate the content. The leaching efficiency of copper was 97% at 97 ℃. The acid concentration of 1.5M and pulp density of 20% was found to be optimum. The removal of arsenic as ferric arsenate was carried out in two stages: increasing the pH and precipitation of arsenic by adjusting pH of the solution and by adding ferrous sulfate and hydrogen peroxide. The optimum removal of arsenic was 95% when pH was raised to 2.35 followed by precipitation. The key progression of the process is the recovery of copper from ESP dust as well as removal of arsenic from the leach liquor.
References
Oudenne PD, Olson FA, Metall Trans., 14B, 33 (1983)
KUNKUL A, KOCAKERIM MM, YAPICI S, DEMIRBAG A, Int. J. Miner. Process., 41(3), 167 (1994)
Ekmekyapar A, Oya R, Kunkul A, Chem. Biochem. Eng. Q., 17, 261 (2003)
Ata ON, Colak S, Ekinci Z, Copur M, Chem. Eng. Technol., 24(4), 409 (2001)
Bingol D, Canbazoglu M, Hydrometallurgy., 72, 159 (2004)
Rao KS, Narayana KL, Swamy KM, Murthy JS, Metall Mater Trans., 28B, 721 (1997)
Orlov AI, Izv. Vyssh. Uchebn. Zaved. Tsventn. Metall., (in Russian) (Chemical abstract)., 1, 85 (1975)
Priest P, Pauwels LP, Naud J, J. Inorg. Nuclear. Chem., 36, 2493 (1974)
Vinals J, Roca A, Hernandez MC, Benavente O, Hydrometallurgy., 68, 183 (2003)
Herreros O, Quiroz R, Hernandez MC, Vinals J, Hydrometallurgy., 64, 153 (2002)
Padilla R, Rodriguez G, Ruiz MC, Hydrometallurgy., 100, 152 (2010)
Tongamp W, Takasaki Y, Shibayama A, Hydrometallurgy., 98, 213 (2009)
Janin A, Drogui P, Blais JF, Mercier G, J. Hazard. Mater., 96, 318 (2009)
Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS, ACS Nano., 4, 3979 (2010)
Chowdhury SR, Yanful EK, Water Environ. J., 25, 429 (2011)
Park JY, Kim JH, J. Nano Particle Res., 13, 887 (2011)
Kim MJ, Geo Chem.: Exploration, Environment, Analysis., 10, 407 (2010)
Singhania S, Wang Q, Filippou D, Demopoulos GP, Metall Mater Trans., 36B, 327 (2005)
Singhania S, Wang Q, Filippou D, Demopoulos GP, Metall Mater Trans. B., 37, 189 (2006)
Mary CH, Madeline ES, Donald RJ, Martha MG, Environ. Sci. Technol., 40, 6709 (2006)
Bluteau MC, Demopoulos GP, Hydrometallurgy., 87, 163 (2007)
Fujita T, Taguchi R, Abumiya M, Matsumoto M, Shibata E, Nakamura T, Hydrometallurgy., 90, 85 (2008)
Fujita T, Taguchi R, Abumiya M, Matsumoto M, Shibata E, Nakamura T, Hydrometallurgy., 90, 92 (2008)
Fujita T, Taguchi R, Shibata E, Nakamura T, Hydrometallurgy., 96, 300 (2009)
Voigt DE, Brantley SL, Hennet RJC, Appl. Geo. Chem., 11, 633 (1996)
Yang L, Donahoe RJ, Redwine JC, Sci. Total Environ., 387, 28 (2007)
Schaller J, Mkandawire M, Dudel EG, Environ. Pollut., 158, 2454 (2010)
Vinals J, Sunyer A, Molera P, Cruells M, Llorca N, Hydrometallurgy., 104, 247 (2010)
Morales A, Cruells M, Roca A, Berg R, Hydrometallurgy., 105, 148 (2010)
Shibayama A, Takasaki Y, William T, Yamatodani A, Higuchi Y, Sunagawa S, Ono E, J. Hazard. Mater., 181(1-3), 1016 (2010)
Xu ZF, Li Q, Nie HP, Trans. Nonfer. Met. Soc. China., 20, s176 (2010)
Paktunc D, Dutrizac J, Gertsman V, Geochim. Cosmochim.Acta., 72, 2649 (2008)
Langmuir D, Mahoney J, Rowson J, Geochim. Cosmochim. Acta., 70, 2942 (2006)
Paktunc D, Bruggeman K, Appl. Geochem., 25, 674 (2010)
Vogel AI, A text book of inorganic analysis, 3rd Ed., The English Language Book Society and Longmans, Green and Co., LTD., London, 358 (1961)
KUNKUL A, KOCAKERIM MM, YAPICI S, DEMIRBAG A, Int. J. Miner. Process., 41(3), 167 (1994)
Ekmekyapar A, Oya R, Kunkul A, Chem. Biochem. Eng. Q., 17, 261 (2003)
Ata ON, Colak S, Ekinci Z, Copur M, Chem. Eng. Technol., 24(4), 409 (2001)
Bingol D, Canbazoglu M, Hydrometallurgy., 72, 159 (2004)
Rao KS, Narayana KL, Swamy KM, Murthy JS, Metall Mater Trans., 28B, 721 (1997)
Orlov AI, Izv. Vyssh. Uchebn. Zaved. Tsventn. Metall., (in Russian) (Chemical abstract)., 1, 85 (1975)
Priest P, Pauwels LP, Naud J, J. Inorg. Nuclear. Chem., 36, 2493 (1974)
Vinals J, Roca A, Hernandez MC, Benavente O, Hydrometallurgy., 68, 183 (2003)
Herreros O, Quiroz R, Hernandez MC, Vinals J, Hydrometallurgy., 64, 153 (2002)
Padilla R, Rodriguez G, Ruiz MC, Hydrometallurgy., 100, 152 (2010)
Tongamp W, Takasaki Y, Shibayama A, Hydrometallurgy., 98, 213 (2009)
Janin A, Drogui P, Blais JF, Mercier G, J. Hazard. Mater., 96, 318 (2009)
Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS, ACS Nano., 4, 3979 (2010)
Chowdhury SR, Yanful EK, Water Environ. J., 25, 429 (2011)
Park JY, Kim JH, J. Nano Particle Res., 13, 887 (2011)
Kim MJ, Geo Chem.: Exploration, Environment, Analysis., 10, 407 (2010)
Singhania S, Wang Q, Filippou D, Demopoulos GP, Metall Mater Trans., 36B, 327 (2005)
Singhania S, Wang Q, Filippou D, Demopoulos GP, Metall Mater Trans. B., 37, 189 (2006)
Mary CH, Madeline ES, Donald RJ, Martha MG, Environ. Sci. Technol., 40, 6709 (2006)
Bluteau MC, Demopoulos GP, Hydrometallurgy., 87, 163 (2007)
Fujita T, Taguchi R, Abumiya M, Matsumoto M, Shibata E, Nakamura T, Hydrometallurgy., 90, 85 (2008)
Fujita T, Taguchi R, Abumiya M, Matsumoto M, Shibata E, Nakamura T, Hydrometallurgy., 90, 92 (2008)
Fujita T, Taguchi R, Shibata E, Nakamura T, Hydrometallurgy., 96, 300 (2009)
Voigt DE, Brantley SL, Hennet RJC, Appl. Geo. Chem., 11, 633 (1996)
Yang L, Donahoe RJ, Redwine JC, Sci. Total Environ., 387, 28 (2007)
Schaller J, Mkandawire M, Dudel EG, Environ. Pollut., 158, 2454 (2010)
Vinals J, Sunyer A, Molera P, Cruells M, Llorca N, Hydrometallurgy., 104, 247 (2010)
Morales A, Cruells M, Roca A, Berg R, Hydrometallurgy., 105, 148 (2010)
Shibayama A, Takasaki Y, William T, Yamatodani A, Higuchi Y, Sunagawa S, Ono E, J. Hazard. Mater., 181(1-3), 1016 (2010)
Xu ZF, Li Q, Nie HP, Trans. Nonfer. Met. Soc. China., 20, s176 (2010)
Paktunc D, Dutrizac J, Gertsman V, Geochim. Cosmochim.Acta., 72, 2649 (2008)
Langmuir D, Mahoney J, Rowson J, Geochim. Cosmochim. Acta., 70, 2942 (2006)
Paktunc D, Bruggeman K, Appl. Geochem., 25, 674 (2010)
Vogel AI, A text book of inorganic analysis, 3rd Ed., The English Language Book Society and Longmans, Green and Co., LTD., London, 358 (1961)