ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 23, 2012
Accepted November 14, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Upgrading of biofuel by the catalytic deoxygenation of biomass

1School of Applied Chemical Engineering, Chonnam National University, Gwangju 500-757, Korea 2Department of Environmental Engineering, Sunchon National University, Suncheon 540-742, Korea 3Department of Chemical Engineering, Kongju National University, Cheonan 330-717, Korea 4Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea 5Green Chemistry Research Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea 6Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, Korea 7School of Environmental Engineering, University of Seoul, Seoul 130-743, Korea
catalica@uos.ac.kr
Korean Journal of Chemical Engineering, December 2012, 29(12), 1657-1665(9), 10.1007/s11814-012-0199-5
downloadDownload PDF

Abstract

Biomass can be used to produce biofuels, such as bio-oil and bio-diesel, by a range of methods. Biofuels, however, have a high oxygen content, which deteriorates the biofuel quality. Therefore, the upgrading of biofuels via catalytic deoxygenation is necessary. This paper reviews the recent advances of the catalytic deoxygenation of biomass. Catalytic cracking of bio-oil is a promising method to enhance the quality of bio-oil. Microporous zeolites, mesoporous zeolites and metal oxide catalysts have been investigated for the catalytic cracking of biomass. On the other hand, it is important to develop methods to reduce catalyst coking and enhance the lifetime of the catalyst. In addition, an examination of the effects of the process parameters is very important for optimizing the composition of the product. The catalytic upgrading of triglycerides to hydrocarbon-based fuels is carried out in two ways. Hydrodeoxygenation (HDO) was introduced to remove oxygen atoms from the triglycerides in the form of H2O by hydrogenation. HDO produced hydrogenated biodiesel because the catalysts and process were based mainly on well-established technology, hydrodesulfurization. Many refineries and companies have attempted to develop and commercialize the HDO process. On the other hand, the consumption of huge amounts of hydrogen is a major problem hindering the wide-spread use of HDO process. To solve the hydrogen problem, deoxygenation with the minimum use of hydrogen was recently proposed. Precious metal-based catalysts showed reasonable activity for the deoxygenation of reagent-grade fatty acids with a batch-mode reaction. On the other hand, the continuous production of hydrocarbon in a fixed-bed showed that the initial catalytic activity decreases gradually due to coke deposition. The catalytic activity for deoxygenation needs to be maintained_x000D_ to achieve the widespread production of hydrocarbon-based fuels with a biological origin.

References

Park HJ, Heo HS, Yim JH, Jeon JK, Ko YS, Kim SS, Park YK, Korean J. Chem. Eng., 27(1), 73 (2010)
Yu MJ, Jo YB, Kim SG, Lim YK, Jeon JK, Park SH, Kim SS, Park YK, Korean J. Chem. Eng., 28(12), 2287 (2011)
Lee SU, Jung K, Park GW, Seo C, Hong YK, Hong WH, Chang HN, Korean J. Chem. Eng., 29(7), 831 (2012)
Jeon JK, Park YK, Korean J. Chem. Eng., 29(2), 196 (2012)
Kim JW, Lee SH, Kim SS, Park SH, Jeon JK, Park YK, Korean J. Chem. Eng., 28(9), 1867 (2011)
Weerachanchai P, Tangsathitkulchai C, Tangsathitkulchai M, Korean J. Chem. Eng., 28(12), 2262 (2011)
Kim YM, Lee HW, Lee SH, Kim SS, Park SH, Jeon JK, Kim S, Park YK, Korean J. Chem. Eng., 28(10), 2012 (2011)
Jeon MJ, Choi SJ, Yoo KS, Ryu C, Park SH, Lee JM, Jeon JK, Park YK, Kim S, Korean J. Chem. Eng., 28(2), 497 (2011)
Xiaoxiang J, Ellis N, Zhaoping Z, Korean J. Chem. Eng., 28(1), 133 (2011)
Park HJ, Heo HS, Yoo KS, Yim JH, Sohn JM, Jeong KE, Jeon JK, Park YK, J. Ind. Eng. Chem., 17(3), 549 (2011)
Butler E, Devlin G, Meier D, McDonnell K, Renew. Sustain.Energy Rev., 15, 4171 (2011)
Xiu S, Shahbazi A, Renew. Sustain. Energy Rev., 16, 4406 (2012)
Isahak WNRW, Hisham MWM, Yarmo MA, Hin TY, Renew. Sustain. Energy Rev., 16, 5910 (2012)
Choudhary TV, Phillips CB, Appl. Catal. A: Gen., 397(1-2), 1 (2011)
Bulushev DA, Ross JRH, Catal. Today, 171(1), 1 (2011)
Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD, Appl. Catal. A: Gen., 407(1-2), 1 (2011)
Bridgwater AV, Biomass Bioenergy., 38, 68 (2012)
Park HJ, Jeon JK, Suh DJ, Suh YW, Heo HS, Park YK, Catal. Surv. Asia., 15, 161 (2011)
Haag AL, Nature., 447, 520 (2007)
Perego C, Bosetti A, Micropor. Mesopor. Mater., 144, 28 (2011)
Huber GW, Corma A, Angew. Chem. Int. Ed., 46, 7184 (2007)
Mante OD, Agblevor FA, Biomass Conv. Bioref., 1, 203 (2011)
Aho A, Tokarev A, Backman P, Kumar N, Eranen K, Hupa M, Holmbom B, Salmi T, Murzin DY, Top. Catal., 54, 941 (2011)
Mullen CA, Boateng AA, Mihalcik DJ, Goldberg NM, Energy Fuels, 25(11), 5444 (2011)
Valle B, Castano P, Olazar M, Bilbao J, Gayubo AG, J. Catal., 285(1), 304 (2012)
Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Lappas AA, Pilavachi PA, Bioresour. Technol., 102(17), 8261 (2011)
Mante OD, Agblevor FA, Oyama ST, McClung R, Bioresour.Technol., 111, 482 (2012)
Stephanidis S, Nitsos C, Kalogiannis K, Iliopoulou EF, Lappas AA, Triantafyllidis KS, Catal. Today, 167(1), 37 (2011)
Ozbay G, Ozcifci A, Karagoz S, Environ. Progress Sustain. Energy., In Press.
Kim SS, Park SH, Jeon JK, Chang D, Kim SC, Lee KH, Park YK, Res. Chem. Intermed., 37, 1355 (2011)
Choi SJ, Park SH, Jeon JK, Lee IG, Ryu C, Suh DJ, Park YK, Renew. Energy., http://dx.doi.org/10.1016/j.renene.2012.08.050.
Choi HJ, Heo HS, Jeon JK, Park SH, Jeong KE, Park YK, Rev. Adv. Mater. Sci., 28, 250 (2011)
Lu Q, Zhang ZF, Dong CQ, Zhu XF, Energies., 3, 1805 (2010)
Bu Q, Lei H, Ren S, Wang L, Zhang Q, Tang J, Ruan R, Bioresour. Technol., 108, 274 (2012)
Zhang B, Yang C, Moen J, Le Z, Hennessy K, Wan Y, Liu Y, Lei H, Chen P, Ruan R, Energy Sources Part A-Recovery Util. Environ. Eff., 32(18), 1756 (2010)
Mochizuki T, Toba M, Yosfflmura Y, J. Japan Petroleum Inst., 55, 69 (2012)
Park HJ, Park KH, Jeon JK, Kim J, Ryoo R, Jeong KE, Park SH, Park YK, Fuel., 97, 379 (2012)
Gercel HF, J. Anal. Appl. Pyrol., 92, 233 (2011)
Putun E, Energy, 35(7), 2761 (2010)
Wang S, Liu Q, Wang K, Guo X, Luo Z, Cen K, Fransson T, Int. J. Green Energy., 7, 300 (2010)
Jeon MJ, Kim SS, Jeon JK, Park SH, Kim JM, Sohn JM, Lee SH, Park YK, Nanoscale Res. Lett., 7, 1 (2012)
Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK, Bioresour. Technol., 102(3), 3512 (2011)
Thangalazhy-Gopakumar S, Adhikari S, Chattanathan SA, Gupta RB, Bioresour. Technol., 118, 150 (2012)
Yang WY, Zeng Y, Luo J, Tong DM, Qing RW, Fan Y, Hu CW, J. Fuel Chem. Technol., 39, 664 (2011)
Lee HY, Jeon JK, Park SH, Jeong KE, Chae HJ, Park YK, Nanoscale Res. Lett., 6, 500 (2011)
Kim SS, Heo HS, Kim SG, Ryoo R, Kim J, Jeon JK, Park SH, Park YK, J. Nanosci. Nanotechnol., 11, 6167 (2011)
Park YK, Lee HW, Jeon JK, Kim SS, Ryu C, Kim JM, Chae HJ, Jeong KE, Res. Chem. Intermed., 37, 1283 (2011)
Heo HS, Kim SG, Jeong KE, Jeon JK, Park SH, Kim JM, Kim SS, Park YK, Bioresour. Technol., 102(4), 3952 (2011)
Van Gerpen J, Fuel Process. Technol., 86(10), 1097 (2005)
Ma FR, Hanna MA, Bioresour. Technol., 70(1), 1 (1999)
http://www.nesteoil.com/default.asp?path=1,41,11991,12243,12335(accessed October 2012).
Kalnes T, Marker T, Hsonnard DR, Int. J. Chem. React. Eng., 5, A48 (2007)
http://petrofed.winwinhosting.net/upload/2_PNair02.pdf (accessed October 2012).
http://www.dynamicfuelsllc.com/ (accessed October 2012).
Huber GW, O'Connor P, Corma A, Appl. Catal. A: Gen., 329, 120 (2007)
Veriansyah B, Han JY, Kim SK, Hong SA, Kim YJ, Lim JS, Shu YW, Oh SG, Kim J, Fuel, 94(1), 578 (2012)
Simacek P, Kubicka D, Sebor G, Pospisil M, Fuel, 88(3), 456 (2009)
Kubicka D, Simacek P, Zilkova N, Top. Catal., 52, 161 (2009)
Boda L, Gyorgy O, Solt H, Ferenc L, Valyon J, Thernesz A, Appl. Catal. A: Gen., 374(1-2), 158 (2010)
Ryymin EM, Honkela ML, Viljava TR, Krause AOI, Appl. Catal. A: Gen., 358(1), 42 (2009)
Furimsky E, Appl. Catal. A: Gen., 199(2), 147 (2000)
Peng B, Yao Y, Zhao C, Lercher JA, Angew. Chem. Int. Ed., 124, 2114 (2012)
Lestari S, Maki-Arvela P, Beltramini J, Max Lu GQ, Murzin DY, ChemSusChem., 2, 1109 (2009)
Kubickova I, Snare M, Eranen K, Maki-Arvela P, Murzin DY, Catal. Today, 106(1-4), 197 (2005)
Snare M, Kubickova I, Maki-Arvela P, Eranen K, Murzin DY, Ind. Eng. Chem. Res., 45(16), 5708 (2006)
Snare M, Kubickova I, Maki-Arvela P, Chichova D, Eranen K, Murzin DY, Fuel, 87(6), 933 (2008)
Simakova I, Simakova O, Maki-Arvela P, Simakov A, Estrada M, Murzin DY, Appl. Catal. A: Gen., 355(1-2), 100 (2009)
Lestari S, Maki-Arvela P, Simakova I, Beltramini J, Lu GQM, Murzin DY, Catal. Lett., 130(1-2), 48 (2009)
Maki-Arvela P, Snare M, Kubickova I, Eranen K, Myllyoja J, Murzin DY, Fuel., 87, 35435 (2008)
Bernas H, Eranen K, Simakova I, Leino AR, Kordas K, Myllyoja J, Maki-Arvela P, Salmi T, Murzin DY, Fuel, 89(8), 2033 (2010)
Lestari S, Maki-Arvela P, Bernas H, Simakova O, Sjoholm R, Beltramini J, Lu GQM, Myllyoja J, Simakova I, Murzin DY, Energy Fuels, 23(8), 3842 (2009)
Immer JG, Kelly MJ, Lamb HH, Appl. Catal. A: Gen., 375(1), 134 (2010)
Ford JP, Immer JG, Lamb HH, Top. Catal., 55, 175 (2012)
Immer JG, Lamb HH, Energy Fuels., 24, 5291 (2010)
Na JG, Yi BE, Kim JN, Yi KB, Park SY, Park JH, Kim JN, Ko CH, Catal. Today, 156(1-2), 44 (2010)
Roh HS, Eum IH, Jeong DW, Yi BE, Na JG, Ko CH, Catal. Today, 164(1), 457 (2011)
Na JG, Han JK, Oh YK, Park JH, Jung TS, Han SS, Yoon HC, Chung SH, Kim JN, Ko CH, Catal. Today, 185(1), 313 (2012)
Na JG, Yi BE, Han JK, Oh YK, Park JH, Jung TS, Han SS, Yoon HC, Kim JN, Ko CH, Energy., In Press (2012)
Holmes J, Wurthmann A, Method and System for the selective oxidative decarboxylation of fatty acids, US 20120209049A1 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로