ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 6, 2012
Accepted August 14, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

A theoretical prediction of cage occupancy and heat of dissociation of THF-CH4 hydrate

Department of Energy and Resources Engineering, Korea Maritime University, Busan 606-791, Korea
Korean Journal of Chemical Engineering, December 2012, 29(12), 1670-1673(4), 10.1007/s11814-012-0137-6
downloadDownload PDF

Abstract

This work presents a theoretical prediction of the cage occupancy of CH4 in small cages and the heat of dissociation for THF-CH4 hydrate using the predictive Soave-Redlich-Kwong group contribution method combined with the UNIFAC model. The predicted cage occupancy of CH4 gradually increases with increasing pressure, indicating that the CH4 molecules could readily be encaged in the small 512 cages of the sII hydrate framework stabilized by THF molecules. The molar enthalpy of encagement of CH4 in the small 512 cages of the sII clathrate hydrate is estimated to be 26.7±1.7 kJ mol^(-1).

References

Sloan ED, Clathrate hydrates of natural gases, Marcel Dekker, New York (1998)
Udachin KA, Ratcliffe CI, Ripmeester JA, J. Supramol.Chem., 2, 405 (2002)
Ripmeester JA, Tse JS, Ratcliffe CI, Powell BM, Nature., 325, 135 (1987)
Makogon YF, Holditch SA, Makogon TY, J. Petrol. Sci.Eng., 56, 14 (2007)
Gudmundsson JS, Parlaktuna M, Khokhar AA, SPE Prod. Facil., 9, 69 (1994)
Seo Y, Lee S, Cha I, Lee JD, Lee H, J. Phys. Chem. B, 113(16), 5487 (2009)
Seo YT, Kang SP, Lee H, Fluid Phase Equilib., 189(1-2), 99 (2001)
de Deugd RM, Jager MD, Arons JD, AIChE J., 47(3), 693 (2001)
Zhang Q, Chen GJ, Huang Q, Sun CY, Guo XQ, Ma QL, J. Chem. Eng. Data, 50(1), 234 (2005)
Strobel TA, Koh CA, Sloan ED, Fluid Phase Equilib., 280(1-2), 61 (2009)
Yoon JH, Chun MK, Lee H, AIChE J., 48(6), 1317 (2002)
Yoon JH, Yamamoto Y, Komai T, Kawamura T, AIChE J., 50(1), 203 (2004)
Holderbaum H, Gmehling J, Fluid Phase Equilib., 70, 251 (1991)
Fischer K, Gmehling J, Fluid Phase Equilib., 121(1-2), 185 (1996)
Gmehling J, Li JD, Fischer K, Fluid Phase Equilib., 141(1-2), 113 (1997)
Horstmann S, Fischer K, Gmehling J, Fluid Phase Equilib., 167(2), 173 (2000)
Soave G, Eng. Sci., 27, 1197 (1972)
Huron MJ, Vidal J, Fluid Phase Equilib., 3, 255 (1979)
Yoon JH, Yamamoto Y, Komai T, Haneda H, Kawamura T, Ind. Eng. Chem. Res., 42(5), 1111 (2003)
Tee LS, Gotoh S, Stewart WE, Ind. Eng. Chem. Fund., 5, 356 (1966)
Handa YP, Tse JS, J. Phys. Chem., 90, 5917 (1986)
Anderson R, Chapoy A, Tohidi B, Langmuir, 23(6), 3440 (2007)
Delahaye A, Fournaison L, Marinhas S, Chatti I, Petitet JP, Dalmazzone D, Furst W, Ind. Eng. Chem. Res., 45(1), 391 (2006)
Hanley HJM, Meyers GJ, White JW, Sloan ED, Int. J.Thermophys., 10, 903 (1989)
Makino T, Sugahara T, Ohgaki K, J. Chem. Eng. Data, 50(6), 2058 (2005)
Otake K, Tsuji T, Sato I, Akiya T, Sako T, Hongo M, Fluid Phase Equilib., 171, 175 (2002)
Handa YP, Can. J. Chem., 62, 1659 (1984)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로