Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 24, 2012
Accepted July 2, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Energy saving and thermodynamic efficiency of a double-effect distillation column using internal heat integration
Department of Chemical Engineering, Dong-A University, Busan 604-714, Korea
Korean Journal of Chemical Engineering, December 2012, 29(12), 1680-1687(8), 10.1007/s11814-012-0106-0
Download PDF
Abstract
The existing internally heat-integrated distillation column with the problem of utilizing a compressor is modified to propose a new heat-integrated distillation column without the compressor. Two identical columns of a conventional binary distillation are implemented to the heat integration. The energy used in the reboiler is recovered by the internal heat integration between the stripping section of one of the columns at lower pressure and the rectifying section of the other higher pressure column. The heat integration is similar to double-effect distillation, but internal heat integration requires less pressure elevation. The performance of energy saving and thermal efficiency improvement of the proposed system is evaluated with the two examples of the benzene-toluene and methanol-ethanol processes. The performance comparison indicates that the proposed system requires 17.4% less of reboiler duty for the benzene-toluene process and 15.8% less of heating duty for the methanol-ethanol process. The thermal efficiencies are 16.3% and 23.8% for the benzene-toluene and methanol-ethanol processes, respectively. Elimination of the compressor makes the column operation easy and the separate reboilers and condensers for the two columns in the proposed system provide flexible control, when the controllability of the proposed system is compared with that of the existing internally heat-integrated distillation column.
Keywords
References
Mah RSH, Wodnik RB, AIChE J., 23, 651 (1977)
Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T, Chem. Eng. Res. Des., 81(1), 162 (2003)
Kataoka K, Noda H, Yamaji H, Mukaida T, Kaneda M, Proc.8th World Congress Chem. Eng. Montreal, Canada (2009)
Schmal JP, Van der Kooi HJ, De Rijke A, Olujic Z, Jansens PJ, Chem. Eng. Res. Des., 84(A5), 374 (2006)
Huang KJ, Liu W, Ma JP, Wang SF, Ind. Eng. Chem. Res., 49(3), 1333 (2010)
Wang Y, Huang KJ, Wang SF, Ind. Eng. Chem. Res., 49(7), 3349 (2010)
Pohlmeier J, Rix A, Comput. Chem. Eng., 20(4), 395 (1996)
Kim YH, Ind. Eng. Chem. Res., 50(9), 5733 (2011)
Kim YH, Chem. Eng. Res. Des., 89(12A), 2495 (2011)
Bruinsma OSL, Krikken T, Cot J, Saric M, Tromp SA, Olujic Z, Stankiewicz AI, Chem. Eng. Res. Des., 90(4), 458 (2012)
Maiti D, Jana AK, Samanta AN, Appl. Energy, 88(12), 5221 (2011)
Vanaki A, Eslamloueyan R, Chem. Eng. Process., 52, 21 (2012)
Jiao Y, Wang SJ, Huang KJ, Chen HS, Liu W, Ind. Eng. Chem. Res., 51(10), 4002 (2012)
Schaller M, Hoffmann KH, Siragusa G, Salamon P, Andresen B, Comput. Chem. Eng., 25(11-12), 1537 (2001)
de Koeijer G, Rivero R, Chem. Eng. Sci., 58(8), 1587 (2003)
Mullins OC, Berry RS, J. Phys. Chem., 88, 723 (1984)
Naka Y, Terashita M, Hayashiguchi S, Takamatsu T, J. Chem.Eng. Japan., 13, 123 (1980)
Suphanit B, Bischert A, Narataruksa P, Energy, 32(11), 2121 (2007)
Woo D, Cho Y, Kim BK, Hwang H, Han M, Korean Chem. Eng. Res., 48(3), 342 (2010)
Lee SH, Shamsuzzoha M, Han M, Kim YH, Lee M, Korean J. Chem. Eng., 28(2), 348 (2011)
Cho H, Woo D, Choi Y, Han M, Korean Chem. Eng. Res., 50(2), 270 (2012)
Kansha Y, Tsuru N, Sato K, Fushimi C, Tsutsumi A, Ind. Eng. Chem. Res., 48(16), 7682 (2009)
Lin SW, Yu CC, Chem. Eng. Sci., 59(1), 53 (2004)
Gadalla M, Jimenez L, Olujic Z, Jansens PJ, Comput. Chem. Eng., 31(10), 1346 (2007)
Jana AK, Mali SV, Comput. Chem. Eng., 34(8), 1296 (2010)
Kiran B, Jana AK, Samanta AN, Energy, 41(1), 443 (2012)
LeGoff P, Cachot T, Rivero R, Chem. Eng. Technol., 19(6), 478 (1996)
Anozie AN, Osuolale FN, Osunleke AS, Int. J. Exergy., 6, 715 (2009)
King CJ, Separation processes., 2nd Ed., Mc-Graw-Hill, New York (1980)
Rivero R, Garcia M, Urquiza J, Energy, 29(3), 467 (2004)
Douglas JM, Conceptual design of chemical processes, Mc-Graw-Hill, New York (1988)
Gadalla MA, Chem. Eng. Res. Des., 87(12A), 1658 (2009)
Luyben WL, Ind. Eng. Chem. Res., 32, 476 (1993)
Olujic Z, Sun L, de Rijke A, Jansens PJ, Energy, 31(15), 3083 (2006)
Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T, Chem. Eng. Res. Des., 81(1), 162 (2003)
Kataoka K, Noda H, Yamaji H, Mukaida T, Kaneda M, Proc.8th World Congress Chem. Eng. Montreal, Canada (2009)
Schmal JP, Van der Kooi HJ, De Rijke A, Olujic Z, Jansens PJ, Chem. Eng. Res. Des., 84(A5), 374 (2006)
Huang KJ, Liu W, Ma JP, Wang SF, Ind. Eng. Chem. Res., 49(3), 1333 (2010)
Wang Y, Huang KJ, Wang SF, Ind. Eng. Chem. Res., 49(7), 3349 (2010)
Pohlmeier J, Rix A, Comput. Chem. Eng., 20(4), 395 (1996)
Kim YH, Ind. Eng. Chem. Res., 50(9), 5733 (2011)
Kim YH, Chem. Eng. Res. Des., 89(12A), 2495 (2011)
Bruinsma OSL, Krikken T, Cot J, Saric M, Tromp SA, Olujic Z, Stankiewicz AI, Chem. Eng. Res. Des., 90(4), 458 (2012)
Maiti D, Jana AK, Samanta AN, Appl. Energy, 88(12), 5221 (2011)
Vanaki A, Eslamloueyan R, Chem. Eng. Process., 52, 21 (2012)
Jiao Y, Wang SJ, Huang KJ, Chen HS, Liu W, Ind. Eng. Chem. Res., 51(10), 4002 (2012)
Schaller M, Hoffmann KH, Siragusa G, Salamon P, Andresen B, Comput. Chem. Eng., 25(11-12), 1537 (2001)
de Koeijer G, Rivero R, Chem. Eng. Sci., 58(8), 1587 (2003)
Mullins OC, Berry RS, J. Phys. Chem., 88, 723 (1984)
Naka Y, Terashita M, Hayashiguchi S, Takamatsu T, J. Chem.Eng. Japan., 13, 123 (1980)
Suphanit B, Bischert A, Narataruksa P, Energy, 32(11), 2121 (2007)
Woo D, Cho Y, Kim BK, Hwang H, Han M, Korean Chem. Eng. Res., 48(3), 342 (2010)
Lee SH, Shamsuzzoha M, Han M, Kim YH, Lee M, Korean J. Chem. Eng., 28(2), 348 (2011)
Cho H, Woo D, Choi Y, Han M, Korean Chem. Eng. Res., 50(2), 270 (2012)
Kansha Y, Tsuru N, Sato K, Fushimi C, Tsutsumi A, Ind. Eng. Chem. Res., 48(16), 7682 (2009)
Lin SW, Yu CC, Chem. Eng. Sci., 59(1), 53 (2004)
Gadalla M, Jimenez L, Olujic Z, Jansens PJ, Comput. Chem. Eng., 31(10), 1346 (2007)
Jana AK, Mali SV, Comput. Chem. Eng., 34(8), 1296 (2010)
Kiran B, Jana AK, Samanta AN, Energy, 41(1), 443 (2012)
LeGoff P, Cachot T, Rivero R, Chem. Eng. Technol., 19(6), 478 (1996)
Anozie AN, Osuolale FN, Osunleke AS, Int. J. Exergy., 6, 715 (2009)
King CJ, Separation processes., 2nd Ed., Mc-Graw-Hill, New York (1980)
Rivero R, Garcia M, Urquiza J, Energy, 29(3), 467 (2004)
Douglas JM, Conceptual design of chemical processes, Mc-Graw-Hill, New York (1988)
Gadalla MA, Chem. Eng. Res. Des., 87(12A), 1658 (2009)
Luyben WL, Ind. Eng. Chem. Res., 32, 476 (1993)
Olujic Z, Sun L, de Rijke A, Jansens PJ, Energy, 31(15), 3083 (2006)