Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 27, 2012
Accepted June 5, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Low cost adsorbents obtained from ash for copper removal
Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iasi, Prof.dr.doc. Dimitrie Mangeron 73, Iasi 700050, Romania 1Faculty of Mechanic Engineering, Gheorghe Asachi Technical University of Iasi, Prof.dr.doc. Dimitrie Mangeron 67, Iasi 700050, Romania 2University of Agricultural Sciences and Veterinary Medicine in Iasi, M. Sadoveanu 3, Iasi 700490, Romania
Korean Journal of Chemical Engineering, December 2012, 29(12), 1735-1744(10), 10.1007/s11814-012-0087-z
Download PDF
Abstract
We investigated the utilization of ash and modified ash as a low-cost adsorbent to remove copper ions from aqueous solutions such as wastewater. Batch experiments were conducted to determine the factors affecting adsorption of copper. The influence of pH, adsorbent dose, initial Cu2+ concentration, type of adsorbent and contact time on the adsorption capacity of Cu2+ from aqueous solution by the batch adsorption technique using ash and modified ash as a low-cost adsorbent were investigated. The optimum pH required for maximum adsorption was found to be_x000D_
5. The results from the sorption process showed that the maximum adsorption rate was obtained at 300 mg/L when a different dosage of fly ash was added into the solution, and it can be concluded that decreasing the initial concentration of copper ion is beneficial to the adsorption capacity of the adsorbent. With the increase of pH value, the removal rate increased. When the pH was 5, the removal rate reached the maximum of over 99%. When initial copper content was 300 mg/L and the pH value was 5, the adsorption capacity of the zeolite Z 4 sample reached 27.904 mg/g. The main removal mechanisms were assumed to be the adsorption at the surface of the fly ash together with the precipitation from the solution. The adsorption equilibrium was achieved at pH 5 between 1 and 4 hours in function of type of adsorbent. A dose of 1 : 25 g/mL of adsorbent was sufficient for the optimum removal of copper ions. For all synthesized adsorbents the predominant mechanism can be described by pseudo-second order kinetics.
Keywords
References
Ahn CK, Park D, Woo SH, Park JM, J. Hazard. Mater., 164(2-3), 1130 (2009)
Hamdaoui O, J. Hazard. Mater., B 135, 264 (2006)
Ghosh MK, Poinern GEJ, Issa TB, Singh P, Korean J. Chem. Eng., 29(1), 95 (2012)
Wang C, Li J, Sun X, Wang L, Sun X, J. Environ. Sci., 21, 127 (2009)
Montagnaro F, Santoro L, Chem. Eng. J., 150(1), 174 (2009)
Harja M, Barbuta M, Rusu L, Munteanu C, Buema G, Doniga E, Environ. Eng. Manage. J., 10, 341 (2011)
Hsu TC, Yu CC, Yeh CM, Fuel, 87(7), 1355 (2008)
Mousavi HZ, Hosseinifar A, Jahed V, J. Serb. Chem. Soc., 75(6), 845 (2010)
NTPA 001/2005 and NTPA002/2005 (HG no. 352/2005).
Hui KS, Chao CYH, Kot SC, J. Hazard. Mater., B127, 89 (2005)
Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas, Crit. Reviews Env. Sci. Technol., 39, 783 (2009)
Rozada F, Otero M, Parra JB, Moran A, Garcia AI, Chem. Eng. J., 114(1-3), 161 (2005)
Hernandez-Ramirez O, Holmes S, J. Mater. Chem., 18, 2751 (2008)
Barbuta M, Harja M, Baran I, J. Mater. Civ. Eng., 22, 696 (2010)
Barbuta M, Diaconescu RM, Harja M, J. Mater. Civ. Eng., 24, 523 (2012)
Harja M, Barbuta M, Gavrilescu M, Environ. Eng. Manage.J., 8, 1021 (2009)
Harja M, Barbuta M, Gavrilescu M, Environ. Eng. Manage.J., 8, 513 (2009)
Johnson A, Catalan LJJ, Kinrade SD, Fuel, 89(10), 3042 (2010)
Gupta VK, Suhas, J. Environ. Manage., 90, 2313 (2009)
Ahmaruzzaman M, Progr. Energy Comb. Sci., 36, 327 (2010)
Derkowski A, Franus W, Beran E, Czimerova A, Powder Technol., 166(1), 47 (2006)
Wang S, Wu H, J. Hazard. Mater., B136, 482 (2006)
Juan R, Hernandez S, Andres JM, Ruiz C, Fuel, 86(12-13), 1811 (2007)
Zaeni A, Bandyopadhyay S, Yu AB, Rider J, Sorrell CS, Dain S, Blackburn D, White C, Fuel, 89(2), 399 (2010)
Nascimento M, Moreira Soares PS, de Souza VP, Fuel., 88, 714 (2009)
Dai SF, Zhao L, Peng SP, Chou CL, Wang XB, Zhang Y, Li D, Sun YY, Int. J. Coal Geol., 81(4), 320 (2010)
Font O, Moreno N, Querol X, Izquierdo M, Alvarez E, Diez S, Elvira J, Antenucci D, Nugteren H, Plana F, Lopez A, Coca P, Pena FG, Fuel, 89(10), 2971 (2010)
Luo J, Shen H, Markstrom H, Wang Z, Niu Q, J. Minerals & Mat. Charact. & Eng., 10, 561 (2011)
Ho YS, McKay G, Wase DAJ, Foster CF, Adsorp. Sci. Technol., 18, 639 (2000)
Ghaedi M, Tashkhourian J, Pebdani AA, Sadeghian B, Ana FN, Korean J. Chem. Eng., 28(12), 2255 (2011)
Visa M, Duta A, Environ. Eng. Manage. J., 8, 803 (2009)
Choi JH, Kim S, Kwon YJ, Kim WJ, Micropor. Mesopor. Mater., 96, 157 (2006)
Allen SJ, McKay G, Khader KZH, Environ. Pollut., 56, 39 (1999)
Al-Zboon K, Al-Harahsheh MS, Hani FB, J. Hazard. Mater., 188(1-3), 414 (2011)
Hamdaoui O, J. Hazard. Mater., B 135, 264 (2006)
Ghosh MK, Poinern GEJ, Issa TB, Singh P, Korean J. Chem. Eng., 29(1), 95 (2012)
Wang C, Li J, Sun X, Wang L, Sun X, J. Environ. Sci., 21, 127 (2009)
Montagnaro F, Santoro L, Chem. Eng. J., 150(1), 174 (2009)
Harja M, Barbuta M, Rusu L, Munteanu C, Buema G, Doniga E, Environ. Eng. Manage. J., 10, 341 (2011)
Hsu TC, Yu CC, Yeh CM, Fuel, 87(7), 1355 (2008)
Mousavi HZ, Hosseinifar A, Jahed V, J. Serb. Chem. Soc., 75(6), 845 (2010)
NTPA 001/2005 and NTPA002/2005 (HG no. 352/2005).
Hui KS, Chao CYH, Kot SC, J. Hazard. Mater., B127, 89 (2005)
Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas, Crit. Reviews Env. Sci. Technol., 39, 783 (2009)
Rozada F, Otero M, Parra JB, Moran A, Garcia AI, Chem. Eng. J., 114(1-3), 161 (2005)
Hernandez-Ramirez O, Holmes S, J. Mater. Chem., 18, 2751 (2008)
Barbuta M, Harja M, Baran I, J. Mater. Civ. Eng., 22, 696 (2010)
Barbuta M, Diaconescu RM, Harja M, J. Mater. Civ. Eng., 24, 523 (2012)
Harja M, Barbuta M, Gavrilescu M, Environ. Eng. Manage.J., 8, 1021 (2009)
Harja M, Barbuta M, Gavrilescu M, Environ. Eng. Manage.J., 8, 513 (2009)
Johnson A, Catalan LJJ, Kinrade SD, Fuel, 89(10), 3042 (2010)
Gupta VK, Suhas, J. Environ. Manage., 90, 2313 (2009)
Ahmaruzzaman M, Progr. Energy Comb. Sci., 36, 327 (2010)
Derkowski A, Franus W, Beran E, Czimerova A, Powder Technol., 166(1), 47 (2006)
Wang S, Wu H, J. Hazard. Mater., B136, 482 (2006)
Juan R, Hernandez S, Andres JM, Ruiz C, Fuel, 86(12-13), 1811 (2007)
Zaeni A, Bandyopadhyay S, Yu AB, Rider J, Sorrell CS, Dain S, Blackburn D, White C, Fuel, 89(2), 399 (2010)
Nascimento M, Moreira Soares PS, de Souza VP, Fuel., 88, 714 (2009)
Dai SF, Zhao L, Peng SP, Chou CL, Wang XB, Zhang Y, Li D, Sun YY, Int. J. Coal Geol., 81(4), 320 (2010)
Font O, Moreno N, Querol X, Izquierdo M, Alvarez E, Diez S, Elvira J, Antenucci D, Nugteren H, Plana F, Lopez A, Coca P, Pena FG, Fuel, 89(10), 2971 (2010)
Luo J, Shen H, Markstrom H, Wang Z, Niu Q, J. Minerals & Mat. Charact. & Eng., 10, 561 (2011)
Ho YS, McKay G, Wase DAJ, Foster CF, Adsorp. Sci. Technol., 18, 639 (2000)
Ghaedi M, Tashkhourian J, Pebdani AA, Sadeghian B, Ana FN, Korean J. Chem. Eng., 28(12), 2255 (2011)
Visa M, Duta A, Environ. Eng. Manage. J., 8, 803 (2009)
Choi JH, Kim S, Kwon YJ, Kim WJ, Micropor. Mesopor. Mater., 96, 157 (2006)
Allen SJ, McKay G, Khader KZH, Environ. Pollut., 56, 39 (1999)
Al-Zboon K, Al-Harahsheh MS, Hani FB, J. Hazard. Mater., 188(1-3), 414 (2011)