Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 11, 2012
Accepted May 24, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Kinetics, mechanism, isotherm and thermodynamic analysis of adsorption of cadmium ions by surface-modified Strychnos potatorum seeds
Ponnusamy Senthil Kumar†
Rangasamy Gayathri1
Chandrasekaran Senthamarai2
Muthukumar Priyadharshini
Panimayam Sebastina Anne Fernando
Ramakrishnan Srinath
Vaidyanathan Vinoth Kumar2
Department of Chemical Engineering, SSN College of Engineering, Chennai 603 110, India 1Department of Civil Engineering, Sri Krishna College of Technology, Coimbatore 641 042, India 2Department of Applied Science and Technology, AC Tech, Anna University, Chennai 600 025, India
senthilchem8582@gmail.com
Korean Journal of Chemical Engineering, December 2012, 29(12), 1752-1760(9), 10.1007/s11814-012-0077-1
Download PDF
Abstract
The surface-modified Strychnos potatorum seeds (SMSP) were used as an effective low-cost adsorbent for the removal of cadmium ions from aqueous solution. SMSP was characterized by Fourier transform infrared spectroscopy and scanning electron microscopic analyses. The effect of operating variables such as solution pH, adsorbent dose, contact time, initial cadmium ions concentration and temperature on the removal of cadmium ions were studied in a batch mode adsorption operation. The optimum conditions for the adsorption of cadmium ions onto the SMSP were found to be: pH of 5.0, SMSP dose of 2 g/L, contact time of 30min, temperature of 30 ℃ for an initial cadmium ions concentration of 100 mg/L. Kinetic data were analyzed using the pseudo-first order and pseudo-second order kinetic equations, intraparticle diffusion model, Boyd kinetic model and shrinking core model. The characteristic parameters for each model have been estimated. Adsorption of cadmium ions onto the SMSP follows the pseudo-second order kinetic model. The rate-limiting steps in the adsorption process were found to be external and internal diffusion. Equilibrium data were well described by the Langmuir isotherm model than the Freundlich isotherm model, which yields a maximum monolayer adsorption capacity of 200mg/g. Thermodynamic parameters such as standard free energy change, enthalpy change and entropy change were also estimated. The results show that the removal of cadmium ions by the SMSP was found to be spontaneous and exothermic.
References
BIS, Methods of sampling and test (physical and chemical) for water and waste water, Part 41 Cadmium (first revision), IS No. 3025 (Part 41) (1992)
Bulut Y, Tez Z, J. Hazard. Mater., 149(1), 35 (2007)
Ofomaja AE, YSHo, J. Hazard. Mater., B139, 356 (2007)
Leyva-Ramos R, Bernal-Jacome LA, Acosta-Rodriguez I, Sep. Purif. Technol., 45(1), 41 (2005)
Martinez M, Miralles N, Hidalgo S, Fiol N, Villaescusa I, Poch J, J. Hazard. Mater., 133(1-3), 203 (2006)
Min SH, Han JS, Shin EW, Park JK, Water Res., 38, 1289 (2004)
Saeed A, Iqbal M, Holl WH, J. Hazard. Mater., 168(2-3), 1467 (2009)
Al-Anber ZA, Matouq MAD, J. Hazard. Mater., 151(1), 194 (2008)
Saeed A, Akhter MW, Iqbal M, Sep. Purif. Technol., 45(1), 25 (2005)
Brown P, Jefcoat IA, Parrish D, Gill S, Graham E, Adv. Environ.Res., 4, 19 (2002)
Iqbal M, Saeed A, Akhtar N, Bioresour. Technol., 81(2), 151 (2002)
Taty-Costodes CV, Fauduet H, Porte C, Delacroix A, J. Hazard.Mater., B105, 121 (2003)
Kumar U, Bandyopadhyay M, Bioresour. Technol., 97(1), 104 (2006)
Singh KK, Rastogi R, Hasan SH, J. Hazard. Mater., A121, 51 (2005)
Low KS, Lee CK, Liew SC, Process Biochem., 36, 59 (2000)
Qi BC, Aldrich C, Bioresour. Technol., 99(13), 5595 (2008)
Singh KK, Singh AK, Hasan SH, Bioresour. Technol., 97(8), 994 (2006)
Kumar PS, Ramalingam S, Sathyaselvabala V, Kirupha SD, Murugesan A, Sivanesan S, Korean J. Chem. Eng., 29(6), 756 (2012)
Kumar PS, Ramalingam S, Abhinaya RV, Kirupha SD, Murugesan A, Sivanesan S, Clean - Soil, Air, Water., 40, 188 (2012)
Kumar PS, Ramakrishnan K, Kirupha SD, Sivanesan S, Braz. J. Chem. Eng., 27, 347 (2010)
Senthilkumar P, Gayathri R, Environ. Eng. Manage. J., 9, 429 (2010)
Eloussaief M, Sdiri A, Benzina M, Environ. Sci. Pollut. Res.
Sdiri A, Higashi T, Chaabouni R, Jamoussi F, Water Air Soil Pollut., 223, 1191 (2012)
Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N, Chem. Eng. J., 172(1), 37 (2011)
Eloussaief M, Kallel N, Yaacoubi A, Benzina M, Chem. Eng. J., 168(3), 1024 (2011)
Eloussaief M, Benzina M, J. Hazard. Mater., 178(1-3), 753 (2010)
Lagergren S, Kungliga Svenska Vetensk Handl., 24, 1 (1898)
Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
Weber WJ, Morris JC, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89, 31 (1963)
Boyd GE, Adamson AW, Myers LS, J. Ame. Chem. Soc., 69, 2836 (1947)
Levenspiel O, Chemical reaction engineering, 3rd Ed., John Wiley & Sons (1999)
Lewandowski Z, Roe F, Biotechnol. Bioeng., 43(2), 186 (1994)
Veglio F, Beolchini F, Gasbarro A, Process Biochem., 32(2), 99 (1997)
Langmuir I, J. Ame. Chem. Soc., 40, 1361 (1918)
Freundlich HMF, J. Phy. Chem., 57, 385 (1906)
Bulut Y, Tez Z, J. Hazard. Mater., 149(1), 35 (2007)
Ofomaja AE, YSHo, J. Hazard. Mater., B139, 356 (2007)
Leyva-Ramos R, Bernal-Jacome LA, Acosta-Rodriguez I, Sep. Purif. Technol., 45(1), 41 (2005)
Martinez M, Miralles N, Hidalgo S, Fiol N, Villaescusa I, Poch J, J. Hazard. Mater., 133(1-3), 203 (2006)
Min SH, Han JS, Shin EW, Park JK, Water Res., 38, 1289 (2004)
Saeed A, Iqbal M, Holl WH, J. Hazard. Mater., 168(2-3), 1467 (2009)
Al-Anber ZA, Matouq MAD, J. Hazard. Mater., 151(1), 194 (2008)
Saeed A, Akhter MW, Iqbal M, Sep. Purif. Technol., 45(1), 25 (2005)
Brown P, Jefcoat IA, Parrish D, Gill S, Graham E, Adv. Environ.Res., 4, 19 (2002)
Iqbal M, Saeed A, Akhtar N, Bioresour. Technol., 81(2), 151 (2002)
Taty-Costodes CV, Fauduet H, Porte C, Delacroix A, J. Hazard.Mater., B105, 121 (2003)
Kumar U, Bandyopadhyay M, Bioresour. Technol., 97(1), 104 (2006)
Singh KK, Rastogi R, Hasan SH, J. Hazard. Mater., A121, 51 (2005)
Low KS, Lee CK, Liew SC, Process Biochem., 36, 59 (2000)
Qi BC, Aldrich C, Bioresour. Technol., 99(13), 5595 (2008)
Singh KK, Singh AK, Hasan SH, Bioresour. Technol., 97(8), 994 (2006)
Kumar PS, Ramalingam S, Sathyaselvabala V, Kirupha SD, Murugesan A, Sivanesan S, Korean J. Chem. Eng., 29(6), 756 (2012)
Kumar PS, Ramalingam S, Abhinaya RV, Kirupha SD, Murugesan A, Sivanesan S, Clean - Soil, Air, Water., 40, 188 (2012)
Kumar PS, Ramakrishnan K, Kirupha SD, Sivanesan S, Braz. J. Chem. Eng., 27, 347 (2010)
Senthilkumar P, Gayathri R, Environ. Eng. Manage. J., 9, 429 (2010)
Eloussaief M, Sdiri A, Benzina M, Environ. Sci. Pollut. Res.
Sdiri A, Higashi T, Chaabouni R, Jamoussi F, Water Air Soil Pollut., 223, 1191 (2012)
Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N, Chem. Eng. J., 172(1), 37 (2011)
Eloussaief M, Kallel N, Yaacoubi A, Benzina M, Chem. Eng. J., 168(3), 1024 (2011)
Eloussaief M, Benzina M, J. Hazard. Mater., 178(1-3), 753 (2010)
Lagergren S, Kungliga Svenska Vetensk Handl., 24, 1 (1898)
Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
Weber WJ, Morris JC, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89, 31 (1963)
Boyd GE, Adamson AW, Myers LS, J. Ame. Chem. Soc., 69, 2836 (1947)
Levenspiel O, Chemical reaction engineering, 3rd Ed., John Wiley & Sons (1999)
Lewandowski Z, Roe F, Biotechnol. Bioeng., 43(2), 186 (1994)
Veglio F, Beolchini F, Gasbarro A, Process Biochem., 32(2), 99 (1997)
Langmuir I, J. Ame. Chem. Soc., 40, 1361 (1918)
Freundlich HMF, J. Phy. Chem., 57, 385 (1906)