ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 5, 2011
Accepted April 27, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Biological synthesis of gold nanoparticles by Bacillus subtilis and evaluation of increased antimicrobial activity against clinical isolates

Department of Biotechnology, P. R. Engineering College, Thanjavur 613 403, India 1Department of Energy Engineering, Kumaraguru College of Technology, Coimbatotore 641 049, India 2Department of Biotechnology, Karunya University, Coimbatore 641 114, India
biotechthiru@gmail.com
Korean Journal of Chemical Engineering, December 2012, 29(12), 1761-1765(5), 10.1007/s11814-012-0055-7
downloadDownload PDF

Abstract

Biological sources of microorganisms and plants are playing a major role in the reduction of metallic nanoparticles such as silver and gold, as it emerges as an eco-friendly and exciting approach in nanotechnology. We report on the biological synthesis of gold nanoparticles using the culture supernatant of Bacillus subtilis and its effect on increased antibacterial and antifungal activities against clinically isolated organism. When the supernatant of Bacillus subtilis was added to HAuCl4 aqueous solution, HAuCl4 was reduced as Au+ ions, which confirmed the presence of nanoparticles by the color change of pale yellow to purple. The minimum and maximum peaks were observed at 24th and 120th hours by UV-Visible spectroscopy. The combined antibacterial and antifungal activities with various antibiotics were observed against clinical isolates.

References

Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL, J. Nanopart. Res., 6, 377 (2004)
Guoa S, Wang E, Anal. Chim. Acta., 598, 181 (2007)
Husseiny MI, Abd El-Aziz M, Badr Y, Mahmoud MA, Spectrochim. Acta Part A., 67, 1003 (2007)
Song JY, Kim BS, Bioprocess Biosyst. Eng., 32(1), 79 (2008)
Gericke M, Pinches A, Gold Bull., 39, 22 (2006)
Klaus T, Joerger R, Olsson E, Granqvist CG, Proc. Nat.Acad. Sci. U.S.A., 96, 13611 (1999)
Reeves RD, Baker AJM, Metal-accumulating plants, In Raskin I. and Ensley B. D. Eds., 193 (2000)
Gardea-Torresdey JL, Parsons J, Gomez E, Peralta-Videa J, Troiani E, Santiago P, Yacaman M, Nano Lett., 2, 397 (2002)
Gardea-Torresdey JL, Rodriguez E, Parsons JG, Peralta-Videa JR, Meitzner G, Cruz-Jimenez G, Anal. Bioanal.Chem., 382, 347 (2005)
Beveridge TJ, Murray RGE, J. Bacteriol., 141, 876 (1980)
Reddy AS, Chen CY, Chen CC, Jean JS, Chen HR, Tseng MJ, Fan CW, Wang JC, J. Nanosci. Nanotechnol., 10, 6567 (2010)
Balagurunathan R, Radhakrishnan M, Baburajendran R, Velmurugan D, Indian J. Biochem. Biophys., 48, 331 (2011)
Zawrah MF, El-Moez SIA, Life Sci. J., 8(4), 102 (2011)
Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S, Nanotoxicol., 5, 43 (2011)
Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG, Nanoscale Res.Lett., 4, 794 (2009)
Pissuwan D, Valenzuela SM, Miller CM, Cortie MB, Nano Lett., 7, 3808 (2007)
Huang WC, Tsai PJ, Chen YC, Nanomedicine., 2, 777 (2007)
Zharov VP, Mercer KE, Galitovskaya EN, Smeltzery MS, Biophys. J., 90, 619 (2006)
Williams DN, Ehrman SH, Holoman TRP, J. Nanobiotechnol., 4, 3 (2006)
Gu H, P. Ho L, Tong E, Wang L, Xu B, Nano Lett., 3, 1261 (2003)
Lee SM, Song KC, Lee BS, Korean J. Chem. Eng., 27(2), 688 (2010)
Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M, Nanomedicine: Nanotechnology, Biology and Medicine., 5, 382 (2009)
Shahverdi AR, Fakhimi A, PharmD, Shahverdi HR, Minaian S, Nanomedicine: Nanotechnology, Biology and Medicine., 3, 168 (2007)
Zhang YW, Peng HS, Huang W, Zhou YF, Yan DY, J. Colloid Interface Sci., 325(2), 371 (2008)
Grace AN, Pandian K, Colloids and Surfaces A: Physicochem. Eng. Aspects., 297, 63 (2007)
Zhang H, Chen G, Environ. Sci. Technol., 43, 2905 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로