Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 4, 2012
Accepted June 18, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Formation of nanoporous nickel oxides for supercapacitors prepared by electrodeposition with hydrogen evolution reaction and electrochemical dealloying
School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea
chchung@skku.edu
Korean Journal of Chemical Engineering, December 2012, 29(12), 1802-1805(4), 10.1007/s11814-012-0097-x
Download PDF
Abstract
Highly nanoporous nickel oxide electrodes were obtained by electrodeposition accompanied by hydrogen evolution reaction and the selective electrochemical dealloying of copper from Ni-(Cu) porous foam. The nanoporous nickel oxide electrodes consequently have numerous dendritic morphologies composed of nanopores with 20-30 nm diameters. The specific capacitances were 428 F g^(-1) for as-deposited Ni-(Cu) foam electrode and 1,305 F g^(-1) for nanoporous nickel-oxide electrode after dealloying process, respectively. This indicates increased surface area by dealloying process leads to innovative increase of specific capacitance.
Keywords
References
Zhao X, Sanchez BM, Dobson PJ, Grant PS, Nanoscale., 3, 839 (2011)
Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L, Int. J. Hydrog. Energy., 34, 4889 (2009)
Hyun TS, Tuller HL, Youn DY, Kim HG, Kim ID, J.Mater. Chem., 20, 8971 (2010)
Zhang Y, Wang L, Zhang A, Song Y, Li X, Wu X, Du P, Yan L, Korean J. Chem. Eng., 28(2), 608 (2011)
Yuan C, Hou L, Yang L, Li D, Shen L, Zhang F, Zhang X, J. Mater. Chem., 21, 16035 (2011)
Xia XH, Tu JP, Wang XL, Gu CD, Zhao XB, Chem.Comm., 47, 5786 (2011)
Augustyn V, Dunn B, C. R. Chim., 13, 130 (2010)
Chi B, Li J, Yang X, Gong Y, Wang N, Int. J. Hydrog. Energy., 30, 29 (2005)
Guan C, Liu J, Cheng C, Li H, Li X, Zhou W, Zhang H, Fan HJ, Energy Environ. Sci., 4, 4496 (2011)
Kim YI, Yoon JK, Kown JS, Ko JM, Korean Chem. Eng. Res., 48(4), 440 (2010)
Ko JM, Kim KM, Korean Chem. Eng. Res., 47(1), 11 (2009)
Justin P, Kumar Meher S, Ranga Rao G, J. Phys. Chem. C., 114, 5203 (2010)
Chang KH, Hu CC, Appl. Phys. Lett., 88, 193102 (2006)
Nikolic ND, Popov KI, Pavlovic LJ, Pavlovic MG, J. Electroanal. Chem., 588(1), 88 (2006)
Nikolic ND, Brankovic G, Pavlovic MG, Popov KI, J.Eletroanal. Chem., 621, 13 (2008)
Cherevko S, Chung CH, Talanta., 80, 1371 (2010)
Cherevko S,, Xing X, Chung CH, Electrochem. Commun., 12, 467 (2010)
Cherevko S, Chung CH, Electrochim. Acta, 55(22), 6383 (2010)
Xing X, Cherevko S, Chung CH, Mater. Chem. Phys., 126(1-2), 36 (2011)
Cherevko S, Kulyk N, Chung CH, Nanoscale., 4(1), 103 (2012)
Cherevko S, Kulyk N, Chung CH, Nanoscale., 4(2), 568 (2012)
Cherevko S, Xing XL, Chung CH, Appl. Surf. Sci., 257(18), 8054 (2011)
Cherevko S, Chung CH, Electrochem. Commun., 13, 16 (2011)
Chereyko S, Kulyk N, Chung CH, Langmuir, 28(6), 3306 (2012)
Xia XH, Tu JP, Zhang YQ, Mai YJ, Wang XL, Gu CD, Zhao XB, J. Phys. Chem. C., 115(45), 22662 (2011)
Fukami K, Nakanishi S, Yamasaki H, Tada T, Sonoda K, J.Phys. Chem. C., 111, 1150 (2007)
Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L, Int. J. Hydrog. Energy., 34, 4889 (2009)
Hyun TS, Tuller HL, Youn DY, Kim HG, Kim ID, J.Mater. Chem., 20, 8971 (2010)
Zhang Y, Wang L, Zhang A, Song Y, Li X, Wu X, Du P, Yan L, Korean J. Chem. Eng., 28(2), 608 (2011)
Yuan C, Hou L, Yang L, Li D, Shen L, Zhang F, Zhang X, J. Mater. Chem., 21, 16035 (2011)
Xia XH, Tu JP, Wang XL, Gu CD, Zhao XB, Chem.Comm., 47, 5786 (2011)
Augustyn V, Dunn B, C. R. Chim., 13, 130 (2010)
Chi B, Li J, Yang X, Gong Y, Wang N, Int. J. Hydrog. Energy., 30, 29 (2005)
Guan C, Liu J, Cheng C, Li H, Li X, Zhou W, Zhang H, Fan HJ, Energy Environ. Sci., 4, 4496 (2011)
Kim YI, Yoon JK, Kown JS, Ko JM, Korean Chem. Eng. Res., 48(4), 440 (2010)
Ko JM, Kim KM, Korean Chem. Eng. Res., 47(1), 11 (2009)
Justin P, Kumar Meher S, Ranga Rao G, J. Phys. Chem. C., 114, 5203 (2010)
Chang KH, Hu CC, Appl. Phys. Lett., 88, 193102 (2006)
Nikolic ND, Popov KI, Pavlovic LJ, Pavlovic MG, J. Electroanal. Chem., 588(1), 88 (2006)
Nikolic ND, Brankovic G, Pavlovic MG, Popov KI, J.Eletroanal. Chem., 621, 13 (2008)
Cherevko S, Chung CH, Talanta., 80, 1371 (2010)
Cherevko S,, Xing X, Chung CH, Electrochem. Commun., 12, 467 (2010)
Cherevko S, Chung CH, Electrochim. Acta, 55(22), 6383 (2010)
Xing X, Cherevko S, Chung CH, Mater. Chem. Phys., 126(1-2), 36 (2011)
Cherevko S, Kulyk N, Chung CH, Nanoscale., 4(1), 103 (2012)
Cherevko S, Kulyk N, Chung CH, Nanoscale., 4(2), 568 (2012)
Cherevko S, Xing XL, Chung CH, Appl. Surf. Sci., 257(18), 8054 (2011)
Cherevko S, Chung CH, Electrochem. Commun., 13, 16 (2011)
Chereyko S, Kulyk N, Chung CH, Langmuir, 28(6), 3306 (2012)
Xia XH, Tu JP, Zhang YQ, Mai YJ, Wang XL, Gu CD, Zhao XB, J. Phys. Chem. C., 115(45), 22662 (2011)
Fukami K, Nakanishi S, Yamasaki H, Tada T, Sonoda K, J.Phys. Chem. C., 111, 1150 (2007)