Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 22, 2010
Accepted June 14, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effect of reaction conditions on the catalytic esterification of bio-oil
School of Chemical Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand 1School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
Korean Journal of Chemical Engineering, February 2012, 29(2), 182-189(8), 10.1007/s11814-011-0161-y
Download PDF
Abstract
Studies of bio-oil upgrading via esterification of palm shell bio-oil and alcohols employing acid catalysts were carried out in this work. The effects of esterification conditions on reaction conversion and product quality were investigated. Results indicated that esterification reaction using solid acid catalyst of Amberlyst15 enabled the conversion of organic acids in the bio-oil to esters and could also reduce certain amount of active aldehydes. The utilization of H2SO4 liquid catalyst was found to give higher conversion at the same reaction condition. Furthermore, higher reaction conversion to esters was achievable under conditions of higher temperature, longer reaction time, higher amounts of catalyst and alcohol and the use of shorter hydrocarbon chain of alcohol. Bio-oils, after being subjected to esterification, gave moderate heating value of 23-25 MJ/kg and improved fuel properties of decreased density, viscosity, carbon residue content, ash content, pour point and acidity.
References
Park HJ, Heo HS, Yim JH, Jeon JK, Ko YS, Kim SS, Park YK, Korean J. Chem. Eng., 27(1), 73 (2010)
Oasmaa A, Czernik S, Energy Fuels., 13(4), 914 (1994)
Demirbas MF, Balat M, Energy Conv. Manag., 47(15-16), 2371 (2006)
Diebold JP, National Renewable Energy Laboratory, NREL/SR-570-27613 (2000)
Doshi VA, Vuthaluru HB, Bastow T, Fuel Process. Technol., 86(8), 885 (2005)
Xu JM, Jiang JC, Sun YJ, Lu YJ, Biomass Bioenerg., 32(11), 1056 (2008)
Mahfud FH, Melian-Cabrera I, Manurung R, Heeres HJ, Process Saf. Environ. Prot., 85(B5), 466 (2007)
Zhang Q, Chang J, Wang TJ, Xu Y, Energy Fuels, 20(6), 2717 (2006)
Weerachanchai P, Tangsathitkulchai C, Tangsathitkulchai M, JSAE/SAE International Fuels and Lubricants Meeting, Japan, 1223 (2007)
Garcia-Perez M, Shen J, Wang XS, Li CZ, Fuel Process. Technol., 91(3), 296 (2010)
Garcya-Perez M, Chaala A, Pakdel H, Kretschmer D, Roy C, J. Anal. Appl. Pyrol., 78, 104 (2007)
Dynamotive Energy Systems Corporation (2009). The evaluation of energy: Alternative fuels from cellulose for a better world [Online], Available: http://www.dynamotive.com/assets/resources/PDF/Corporate-Brochure.pdf.
Yang ZQ, Xie WL, Fuel Process. Technol., 88(6), 631 (2007)
Di Serio M, Tesser R, Dimiccoli M, Cammarota F, Nastasi M, Santacesaria E, J. Mol. Catal. A-Chem., 239(1-2), 111 (2005)
Ji SX, Hoye TR, Macosko CW, Macromolecules, 38(11), 4679 (2005)
Schmid GH, Organic chemistry, United States of America, Mosby (1996)
Chan K, Tsai Y, Lin H, Lee M, J. Taiwan Inst. Chem. Eng., 41(4), 414 (2010)
Marchetti JM, Errazu AF, Fuel., 87(15-16), 3477 (2008)
Oxford University, 2005, Safety data for methyl alcohol [On-line], Available: http://msds.chem.ox.ac.uk/ME/methyl_alcohol.html.
Oxford University, 2008, Safety data for ethyl alcohol absolute [Online], Available: http://msds.chem.ox.ac.uk/ET/ethyl_alcohol.html.
Oasmaa A, Czernik S, Energy Fuels., 13(4), 914 (1994)
Demirbas MF, Balat M, Energy Conv. Manag., 47(15-16), 2371 (2006)
Diebold JP, National Renewable Energy Laboratory, NREL/SR-570-27613 (2000)
Doshi VA, Vuthaluru HB, Bastow T, Fuel Process. Technol., 86(8), 885 (2005)
Xu JM, Jiang JC, Sun YJ, Lu YJ, Biomass Bioenerg., 32(11), 1056 (2008)
Mahfud FH, Melian-Cabrera I, Manurung R, Heeres HJ, Process Saf. Environ. Prot., 85(B5), 466 (2007)
Zhang Q, Chang J, Wang TJ, Xu Y, Energy Fuels, 20(6), 2717 (2006)
Weerachanchai P, Tangsathitkulchai C, Tangsathitkulchai M, JSAE/SAE International Fuels and Lubricants Meeting, Japan, 1223 (2007)
Garcia-Perez M, Shen J, Wang XS, Li CZ, Fuel Process. Technol., 91(3), 296 (2010)
Garcya-Perez M, Chaala A, Pakdel H, Kretschmer D, Roy C, J. Anal. Appl. Pyrol., 78, 104 (2007)
Dynamotive Energy Systems Corporation (2009). The evaluation of energy: Alternative fuels from cellulose for a better world [Online], Available: http://www.dynamotive.com/assets/resources/PDF/Corporate-Brochure.pdf.
Yang ZQ, Xie WL, Fuel Process. Technol., 88(6), 631 (2007)
Di Serio M, Tesser R, Dimiccoli M, Cammarota F, Nastasi M, Santacesaria E, J. Mol. Catal. A-Chem., 239(1-2), 111 (2005)
Ji SX, Hoye TR, Macosko CW, Macromolecules, 38(11), 4679 (2005)
Schmid GH, Organic chemistry, United States of America, Mosby (1996)
Chan K, Tsai Y, Lin H, Lee M, J. Taiwan Inst. Chem. Eng., 41(4), 414 (2010)
Marchetti JM, Errazu AF, Fuel., 87(15-16), 3477 (2008)
Oxford University, 2005, Safety data for methyl alcohol [On-line], Available: http://msds.chem.ox.ac.uk/ME/methyl_alcohol.html.
Oxford University, 2008, Safety data for ethyl alcohol absolute [Online], Available: http://msds.chem.ox.ac.uk/ET/ethyl_alcohol.html.