ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 27, 2011
Accepted July 19, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over transition metal oxide/Ce0.6Zr0.4O2 catalysts: Effect of acidity and basicity of the catalysts

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Shinlim-dong, Gwanak-gu, Seoul 151-744, Korea
inksong@snu.ac.kr
Korean Journal of Chemical Engineering, March 2012, 29(3), 317-322(6), 10.1007/s11814-011-0185-3
downloadDownload PDF

Abstract

CeXZr1-XO2 catalysts with different cerium content (X) (X=0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0) were prepared by a sol-gel method. Among these catalysts, Ce0.6Zr0.4O2 showed the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. To see the effect of acidity and basicity of transition metal oxide/Ce0.6Zr0.4O2 catalysts on the catalytic performance in the direct synthesis of dimethyl carbonate, MO/Ce0.6Zr0.4O2 (MO=Ga2O3, La2O3, Ni2O3, Fe2O3, Y2O3, Co3O4, and Al2O3) catalysts were prepared by an incipient wetness impregnation method. NH3-TPD and CO2-TPD experiments were carried out to measure acidity and basicity of the supported catalysts, respectively. Experimental results revealed that both acidity and basicity of the catalysts played a key role in determining the catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. The amount of dimethyl carbonate produced over MO/Ce0.6Zr0.4O2 catalysts increased with increasing both acidity and basicity of the catalysts. Among the catalysts tested, Ga2O3/Ce0.6Zr0.4O2, which had the largest acidity and basicity, exhibited the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide.

References

Keller N, Rebmann G, Keller V, J. Mol. Catal. A-Chem., 317(1-2), 1 (2010)
Delledonne D, Rivetti F, Romano U, Appl. Catal. A: Gen., 221(1-2), 241 (2001)
Babad H, Zeiler AG, Chem. Rev., 73, 75 (1973)
King ST, Catal. Today, 33(1-3), 173 (1997)
Matsuzaki T, Nakamura A, Catal. Surv. Jpn., 1, 77 (1997)
Ju HY, Manju MD, Kim KH, Park SW, Park DW, Korean J. Chem. Eng., 24(5), 917 (2007)
Kim KH, Kim DW, Kim CW, Koh JC, Park DW, Korean J. Chem. Eng., 27(5), 1441 (2010)
Zhang J, Wang F, Wei W, Xiao F, Sun Y, Korean J. Chem. Eng., 27(6), 1744 (2010)
Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K, J. Catal., 192(2), 355 (2000)
Kizlink J, Collect. Czech. Chem. Commun., 58, 1399 (1993)
Sakakura T, Choi JC, Saito Y, Sako T, Polyhedron., 19, 573 (2000)
Kizlink J, Pastucha I, Collect. Czech. Chem. Commun., 60, 687 (1995)
Fang SN, Fujimoto K, Appl. Catal. A: Gen., 142(1), L1 (1996)
Zhao TS, Han YZ, Sun YH, Fuel Process. Technol., 62(2-3), 187 (2000)
Tomishige K, Furusawa Y, Ikeda Y, Asadullah M, Fujimoto K, Catal. Lett., 76(1-2), 71 (2001)
Tomishige K, Kunimori K, Appl. Catal. A: Gen., 237(1-2), 103 (2002)
Jiang CJ, Guo YH, Wang CG, Hu CW, Wu Y, Wang EB, Appl. Catal. A: Gen., 256(1-2), 203 (2003)
La KW, Youn MH, Chung JS, Baeck SH, Song IK, Solid State Phenom., 119, 287 (2007)
Lee HJ, Park S, Jung JC, Song IK, Korean J. Chem. Eng., 28(7), 1518 (2011)
Petre AL, Auroux A, Caldararu M, Ionescu NI, Thernochim.Acta., 79, 117 (2001)
Halasz J, Konya Z, Fudala A, Kiricsi I, Catal. Today, 31(3-4), 293 (1996)
Li Y, He D, Yuan Y, Cheng Z, Zhu Q, Fuel., 81, 1611 (2002)
Sun H, Ding YQ, Duan JZ, Zhang QJ, Wang ZY, Lou H, Zheng XM, Bioresour. Technol., 101(3), 953 (2010)
Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK, Korean J. Chem. Eng., 25(1), 41 (2008)
Lee H, Park S, Song IK, Jung JC, Catal. Lett., 141, 531
Rao GR, Rajkumar T, J. Colloid Interface Sci., 324(1-2), 134 (2008)
Pantu P, Kim K, Gavalas GR, Appl. Catal. A: Gen., 193(1-2), 203 (2000)
Dhage SR, Gaikwad SP, Muthukumar P, Mater. Lett., 58, 2704 (2004)
Postole G, Chowdhury B, Karmakar B, Pinki K, Banerji J, Auroux A, J. Catal., 269(1), 110 (2010)
Shimizu KI, Satsuma A, Hattori T, Appl. Catal. B., 16, 377 (1998)
Petre AL, Perdigon-Melon JA, Gervasini A, Auroux A, Catal. Today, 78(1-4), 377 (2003)
Huang SJ, Walters AB, Vannice MA, Appl. Catal. B: Environ., 26(2), 101 (2000)
Bogatyrev VM, Gun'ko VM, Galaburda MV, Borysenko MV, Pokrovskiy VA, Oranska OI, Polshin EV, Korduban OM, Leboda R, Skubiszewska-Zieba J, J. Colloid Interface Sci., 338(2), 376 (2009)
Ikeda Y, Asadullah M, Fujimoto K, Tomishige K, J. Phys. Chem. B, 105(43), 10653 (2001)
Almusaiteer K, Catal. Commun., 10, 1127 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로