Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 30, 2010
Accepted July 6, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Solvent effects on gravure-printed organic layers of nanoscale thickness for organic solar cells
1School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 440-746, Korea 2SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
hchae@skku.edu
Korean Journal of Chemical Engineering, March 2012, 29(3), 337-340(4), 10.1007/s11814-011-0174-6
Download PDF
Abstract
The effects of different solvents on the fabrication of organic photovoltaic cells by gravure printing are reported. Polymer bulk heterojunction solar cells were fabricated with ITO/PEDOT:PSS/P3HT: PCBM/Al layer structures using 4-9 wt% mixtures of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) in 1,2-dichlorobenzene to optimize solution viscosity for gravure printing. 7 wt% P3HT: PCBM showed optimal efficiency of 1.64% and resulted in an active layer 340 nm thick. Three solvents, 1,2-dichlorobenzene, chloroform, and chlorobenzene, were tested and a 1 : 1 ratio mixture of 1,2-dichlorobenzene and chloroform resulted in the best efficiency of 2.21%. This study demonstrates the importance of solvent effects in the gravure printing of organic photovoltaic devices.
References
Shaheen SE, Ginley DS, Jabbour GE, MRS Bull., 30, 10 (2005)
Liang YY, Xu Z, Xia JB, Tsai ST, Wu Y, Li G, Ray C, Yu LP, Adv. Mater., 22(20), E135 (2010)
Pandey AK, Nunzi JM, Appl. Phys. Lett., 89, 213506 (2006)
Zhou Y, Zhang F, Tvingstedt K, Barrau S, Li F, Tian W, Inganas O, Appl. Phys. Lett., 92, 233308 (2008)
Schilinsky P, Waldauf C, Brabec CJ, Adv. Funct. Mater., 16(13), 1669 (2006)
Shaheen SE, Radspinner R, Peyghambarian N, Jabbour GE, Appl. Phys. Lett., 79, 2996 (2001)
Zhang B, Chae H, Cho SM, Jap. J. Appl. Phys., 48, 020208 (2009)
Hoth CN, Choulis SA, Schilinsky P, Brabec CJ, Adv. Mater., 19(22), 3973 (2007)
Aernouts T, Aleksandrov T, Girotto C, Genoe J, Poortmans J, Appl. Phys. Lett., 92, 03306 (2008)
Ding JM, de la F. Vornbrock A, Ting C, Subramanian V, Sol. Energy Mater. Sol. Cells., 93, 459 (2009)
Lee H, Kim A, Cho SM, Chae H, J. Nanosci. Nanotechnol., 9, 7278 (2009)
Kawano K, Sakai J, Yahiro M, Adachi C, Sol. Energy Mater. Sol. Cells., 93, 514 (2009)
Lee H, Kim A, Cho SM, Chae H, Curr. Appl. Phys., 10, e143 (2010)
Kim A, Lee H, Lee J, Cho SM, Chae H, J. Nanosci. Nanotechnol., 11, 546 (2011)
Liang YY, Xu Z, Xia JB, Tsai ST, Wu Y, Li G, Ray C, Yu LP, Adv. Mater., 22(20), E135 (2010)
Pandey AK, Nunzi JM, Appl. Phys. Lett., 89, 213506 (2006)
Zhou Y, Zhang F, Tvingstedt K, Barrau S, Li F, Tian W, Inganas O, Appl. Phys. Lett., 92, 233308 (2008)
Schilinsky P, Waldauf C, Brabec CJ, Adv. Funct. Mater., 16(13), 1669 (2006)
Shaheen SE, Radspinner R, Peyghambarian N, Jabbour GE, Appl. Phys. Lett., 79, 2996 (2001)
Zhang B, Chae H, Cho SM, Jap. J. Appl. Phys., 48, 020208 (2009)
Hoth CN, Choulis SA, Schilinsky P, Brabec CJ, Adv. Mater., 19(22), 3973 (2007)
Aernouts T, Aleksandrov T, Girotto C, Genoe J, Poortmans J, Appl. Phys. Lett., 92, 03306 (2008)
Ding JM, de la F. Vornbrock A, Ting C, Subramanian V, Sol. Energy Mater. Sol. Cells., 93, 459 (2009)
Lee H, Kim A, Cho SM, Chae H, J. Nanosci. Nanotechnol., 9, 7278 (2009)
Kawano K, Sakai J, Yahiro M, Adachi C, Sol. Energy Mater. Sol. Cells., 93, 514 (2009)
Lee H, Kim A, Cho SM, Chae H, Curr. Appl. Phys., 10, e143 (2010)
Kim A, Lee H, Lee J, Cho SM, Chae H, J. Nanosci. Nanotechnol., 11, 546 (2011)