Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 17, 2011
Accepted May 11, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Characterizations of composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3-δ and Ce0.9Gd0.1O1.95 for solid oxide fuel cells
School of Materials Science & Engineering, Yeungnam University, Gyeongsan 712-749, Korea 1Fuel Cell Project, Research Institute of Industrial Science and Technology, Pohang 790-330, Korea 2Dae-Gyeong Leading Industry Office, Sampoong-dong, Gyeongsan 712-210, Korea
Korean Journal of Chemical Engineering, March 2012, 29(3), 349-355(7), 10.1007/s11814-011-0131-4
Download PDF
Abstract
Composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Ce0.9Gd0.1O1.95 (GDC) are investigated to assess for solid oxide fuel cell (SOFC) applications at relatively low operating temperatures (650-800℃). LSCF with a high surface area of 55 m2g^(-1) is synthesized via a complex method involving inorganic nano-dispersants. The fuel cell performances of anode-supported SOFCs are characterized as a function of compositions of GDC with a surface area of 5m2g^(-1). The SOFCs consist of the following: LSCF-GDC composites as a cathode, GDC as an interlayer, yttrium stabilized zirconia (YSZ) as an electrolyte, Ni-YSZ (50 : 50 wt%) as an anode functional layer, and Ni-YSZ (50 : 50 wt%) for support. The cathodes are prepared for 6LSCF-4GDC (60 : 40 wt%), 5LSCF-5GDC (50 : 50 wt%), and 4LSCF-6GDC (40 : 60 wt%). The 5LSCF-5GDC cathode shows 1.29 Wcm^(-2), 0.97 Wcm^(-2), and 0.47Wcm^(-2) at 780 ℃, 730 ℃, and 680 ℃, respectively. The 6LSCF-4GDC shows 0.92 Wcm^(-2), 0.71 Wcm^(-2), and 0.54Wcm^(-2) at 780 ℃, 730 ℃, and 680 ℃, respectively. At 780 ℃, the highest fuel cell performance is achieved by the 5LSCF-5GDC, while at 680 ℃ the 6LSCF-4GDC shows the highest performance. The best composition of the porous composite cathodes with LSCF(55m2g^(-1)) and GDC (5 m2g^(-1)) needs to be considered with a function of temperature.
Keywords
References
Dusastre V, Kilner JA, Solid State Ion., 126(1-2), 163 (1999)
Kus¡s¡cer D, Holc J, Hrovat S, Kolar D, J. Eur. Ceram. Soc., 21, 1817 (2001)
Mai A, Haanappel VAC, Uhlenbruck S, Tietz F, Stover D, Solid State Ion., 176(15-16), 1341 (2005)
Mai A, Haanappel VAC, Tietz F, Stover D, Solid State Ion., 177(19-25), 2103 (2006)
Teraoka Y, Zhang HM, Okamoto K, Yamazoe N, Mater. Res.Bull., 23, 51 (1988)
Fleig J, J. Power Sources, 105(2), 228 (2002)
Hwang JW, Lee JY, Jo DH, Jung HW, Kim SH, Korean J. Chem. Eng., 28(1), 143 (2011)
Haanappel VAC, Mertens J, Rutenbeck D, Tropartz C, Herzhof W, Sebold D, Tietz F, J. Power Sources, 141(2), 216 (2005)
Adler SB, Lane JA, Steele BC, J. Electrochem. Soc., 143(11), 3554 (1996)
Kilner JA, Desouza RA, Fullarton IC, Solid State Ion., 86-88, 703 (1996)
Fleig J, Annu. Rev. Mater. Res., 33, 361 (2003)
Srdic VV, Omorjan RP, Seidel J, Mater. Sci. Eng. B., 116, 119 (2005)
Murray EP, Sever MJ, Barnett SA, Solid State Ion., 148(1-2), 27 (2002)
Gunasekaran N, Saddawi S, Carberry JJ, J. Catal., 159(1), 107 (1996)
Liu YA, Zheng HT, Liu JR, Zhang T, Chem. Eng. J., 89(1-3), 213 (2002)
Dutta A, Mukhopadhyay J, Basu RN, J. Eur. Ceram. Soc., 29, 2003 (2009)
Shukla S, Seal S, Vij R, Bandyopadhyay S, Nano Lett., 3, 397 (2003)
Kim JH, Park YM, Kim H, J. Power Sources, 196(7), 3544 (2011)
Leng Y, Chan S, Liu Q, Int. J. Hydrog. Energy., 33, 3808 (2008)
Kim JW, Virkar AV, Fung KZ, Mehta K, Singhal SC, J. Electrochem. Soc., 146(1), 69 (1999)
Schichlein H, Muller AC, Voigts M, Krugel A, Ivers-Tiffee E, J. Appl. Electrochem., 32(8), 875 (2002)
Leonide A, Sonn V, Weber A, Ivers-Tiffee E, J. Electrochem. Soc., 155(1), B36 (2008)
Park YM, Kim JH, Kim H, Int. J. Hydrog. Energy., 36, 5617 (2011)
Kus¡s¡cer D, Holc J, Hrovat S, Kolar D, J. Eur. Ceram. Soc., 21, 1817 (2001)
Mai A, Haanappel VAC, Uhlenbruck S, Tietz F, Stover D, Solid State Ion., 176(15-16), 1341 (2005)
Mai A, Haanappel VAC, Tietz F, Stover D, Solid State Ion., 177(19-25), 2103 (2006)
Teraoka Y, Zhang HM, Okamoto K, Yamazoe N, Mater. Res.Bull., 23, 51 (1988)
Fleig J, J. Power Sources, 105(2), 228 (2002)
Hwang JW, Lee JY, Jo DH, Jung HW, Kim SH, Korean J. Chem. Eng., 28(1), 143 (2011)
Haanappel VAC, Mertens J, Rutenbeck D, Tropartz C, Herzhof W, Sebold D, Tietz F, J. Power Sources, 141(2), 216 (2005)
Adler SB, Lane JA, Steele BC, J. Electrochem. Soc., 143(11), 3554 (1996)
Kilner JA, Desouza RA, Fullarton IC, Solid State Ion., 86-88, 703 (1996)
Fleig J, Annu. Rev. Mater. Res., 33, 361 (2003)
Srdic VV, Omorjan RP, Seidel J, Mater. Sci. Eng. B., 116, 119 (2005)
Murray EP, Sever MJ, Barnett SA, Solid State Ion., 148(1-2), 27 (2002)
Gunasekaran N, Saddawi S, Carberry JJ, J. Catal., 159(1), 107 (1996)
Liu YA, Zheng HT, Liu JR, Zhang T, Chem. Eng. J., 89(1-3), 213 (2002)
Dutta A, Mukhopadhyay J, Basu RN, J. Eur. Ceram. Soc., 29, 2003 (2009)
Shukla S, Seal S, Vij R, Bandyopadhyay S, Nano Lett., 3, 397 (2003)
Kim JH, Park YM, Kim H, J. Power Sources, 196(7), 3544 (2011)
Leng Y, Chan S, Liu Q, Int. J. Hydrog. Energy., 33, 3808 (2008)
Kim JW, Virkar AV, Fung KZ, Mehta K, Singhal SC, J. Electrochem. Soc., 146(1), 69 (1999)
Schichlein H, Muller AC, Voigts M, Krugel A, Ivers-Tiffee E, J. Appl. Electrochem., 32(8), 875 (2002)
Leonide A, Sonn V, Weber A, Ivers-Tiffee E, J. Electrochem. Soc., 155(1), B36 (2008)
Park YM, Kim JH, Kim H, Int. J. Hydrog. Energy., 36, 5617 (2011)