Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 31, 2011
Accepted July 13, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Photocatalytic degradation of benzene, toluene, ethylbenzene, and xylene (BTEX) using transition metal-doped titanium dioxide immobilized on fiberglass cloth
Laksana Laokiat1 2
Pongtanawat Khemthong3
Nurak Grisdanurak4†
Paiboon Sreearunothai5
Wanwisa Pattanasiriwisawa6
Wantana Klysubun6
1International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand 2NCE for Environmental and Hazardous Waste Management, Chulalongkorn University, Bangkok 10330, Thailand 3National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani 12120, Thailand 4Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12121, Thailand 5School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathumthani 12121, Thailand 6Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand
gnurak@engr.tu.ac.th
Korean Journal of Chemical Engineering, March 2012, 29(3), 377-383(7), 10.1007/s11814-011-0179-1
Download PDF
Abstract
Transition metal (Fe, V and W)-doped TiO2 was synthesized via the solvothermal technique and immobilized onto fiberglass cloth (FGC) for uses in photocatalytic decomposition of gaseous volatile organic compounds--benzene, toluene, ethylbenzene and xylene (BTEX)--under visible light. Results were compared to that of the standard commercial pure TiO2 (P25) coated FGC. All doped samples exhibit higher visible light catalytic activity than the pure TiO2. The V-doped sample shows the highest photocatalytic activity followed by the W- and Fe-doped samples. The_x000D_
UV-Vis diffuse reflectance spectra reveal that the V-doped sample has the highest visible light absorption followed by the W- and Fe-doped samples. The X-ray diffraction (XRD) patterns indicate that all doped samples contain both anatase and rutile phases with the majority (>80%) being anatase. No new peaks associated with dopant oxides can be observed, suggesting that the transition metal (TM) dopants are well mixed into the TiO2 lattice, or are below the detection limit of the XRD. The X-ray absorption near-edge structure spectra of the Ti K-edge transition indicate that most Ti ions are in a tetravalent state with octahedral coordination, but with increased lattice distortion from Fe- to V- and W-doped samples. Our results show that the TM-doped TiO2 were successfully synthesized and immobilized onto flexible fiberglass cloth suitable for treatment of gaseous organic pollutants under visible light.
References
Wang S, Ang HM, Tade MO, Environ. Int., 33, 694 (2007)
Collins C, Laturnus F, Nepovim A, Environ. Sci. Pollut. Res. Int., 9, 86 (2002)
Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64 (2008)
Lee BY, Park SH, Lee SC, Kang M, Park CH, Choung SJ, Korean J. Chem. Eng., 20(5), 812 (2003)
Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M, Appl. Catal. A: Gen., 265(1), 115 (2004)
Carp O, Huisman CL, Reller A, Prog. Solid State Chem., 32, 33 (2004)
Shannon RD, Acta Crystallogr. A., 32, 751 (1976)
Anpo M, Dohshi S, Kitano M, Hu Y, Takeuchi M, Matsuoke M, Annu. Rev. Mater. Res., 35, 1 (2005)
Ao CH, Lee SC, Appl. Catal. B: Environ., 44(3), 191 (2003)
Ku Y, Ma CM, Shen YS, Appl. Catal. B: Environ., 34(3), 181 (2001)
Dong Y, Bai Z, Liu R, Wang X, Yan H, Zhu T, Environ. Technol., 27, 705 (2006)
You YS, Chung KH, Kim JH, Seo G, Korean J. Chem. Eng., 18(6), 924 (2001)
Wantala K, Laokiat L, Khemthong P, Grisdanurak N, Fukaya K, J. Taiwan Inst. Chem. Eng., 41, 612 (2010)
Khemthong P, Klysubun W, Prayoonpokarach S, Wittayakun J, Mater. Chem. Phys., 121(1-2), 131 (2010)
Ravel B, Newville M, J. Synchrotron Rad., 12, 537 (2005)
Farges F, Brown GE, Rehr JJ, Phys. Rev. B., 56, 1809 (1997)
Ohtani B, Prieto-Mahaney OO, Abe DLR, J. Photochem.Photobiol. A., 216, 179 (2010)
Wang CY, Bottcher C, Bahnemann DW, Dohrmann JK, J.Mater. Chem., 13, 2322 (2003)
Choi J, Park H, Hoffmann MR, J. Phys. Chem. C., 114, 783 (2010)
Fujishima A, Zhang X, C.R. Chimie., 9, 750 (2006)
Wu ZY, Ouvrard G, Gressier P, Natoli CR, Phys. Rev. B., 55, 10382 (1997)
Zhou JK, Takeuchi M, Ray AK, Anpo M, Zhao XS, J. Colloid Interface Sci., 311(2), 497 (2007)
Lee BI, Kaewgun S, Kim W, Choi W, Lee JS, Kim E, J.Renewable Sustainable Energy., 1, 23101 (2009)
Zhang YL, Wei S, Zhang HY, Liu S, Nawaz F, Xiao FS, J. Colloid Interface Sci., 339(2), 434 (2009)
Kanchanatip E, Grisdanurak N, Thongruang R, Neramittagapong A, Reac. Kinet. Mech. Cat., 103, 227 (2011)
Paola AD, Ikeda S, Marci G, Ohtani B, Palmisano L, Int. J.Photoenergy., 3, 171 (2001)
National Institute of Standards and Technology Chemistry Web-Book (2010). http://webbook.nist.gov/chemistry/. Accessed 12 January 2011.
Collins C, Laturnus F, Nepovim A, Environ. Sci. Pollut. Res. Int., 9, 86 (2002)
Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64 (2008)
Lee BY, Park SH, Lee SC, Kang M, Park CH, Choung SJ, Korean J. Chem. Eng., 20(5), 812 (2003)
Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M, Appl. Catal. A: Gen., 265(1), 115 (2004)
Carp O, Huisman CL, Reller A, Prog. Solid State Chem., 32, 33 (2004)
Shannon RD, Acta Crystallogr. A., 32, 751 (1976)
Anpo M, Dohshi S, Kitano M, Hu Y, Takeuchi M, Matsuoke M, Annu. Rev. Mater. Res., 35, 1 (2005)
Ao CH, Lee SC, Appl. Catal. B: Environ., 44(3), 191 (2003)
Ku Y, Ma CM, Shen YS, Appl. Catal. B: Environ., 34(3), 181 (2001)
Dong Y, Bai Z, Liu R, Wang X, Yan H, Zhu T, Environ. Technol., 27, 705 (2006)
You YS, Chung KH, Kim JH, Seo G, Korean J. Chem. Eng., 18(6), 924 (2001)
Wantala K, Laokiat L, Khemthong P, Grisdanurak N, Fukaya K, J. Taiwan Inst. Chem. Eng., 41, 612 (2010)
Khemthong P, Klysubun W, Prayoonpokarach S, Wittayakun J, Mater. Chem. Phys., 121(1-2), 131 (2010)
Ravel B, Newville M, J. Synchrotron Rad., 12, 537 (2005)
Farges F, Brown GE, Rehr JJ, Phys. Rev. B., 56, 1809 (1997)
Ohtani B, Prieto-Mahaney OO, Abe DLR, J. Photochem.Photobiol. A., 216, 179 (2010)
Wang CY, Bottcher C, Bahnemann DW, Dohrmann JK, J.Mater. Chem., 13, 2322 (2003)
Choi J, Park H, Hoffmann MR, J. Phys. Chem. C., 114, 783 (2010)
Fujishima A, Zhang X, C.R. Chimie., 9, 750 (2006)
Wu ZY, Ouvrard G, Gressier P, Natoli CR, Phys. Rev. B., 55, 10382 (1997)
Zhou JK, Takeuchi M, Ray AK, Anpo M, Zhao XS, J. Colloid Interface Sci., 311(2), 497 (2007)
Lee BI, Kaewgun S, Kim W, Choi W, Lee JS, Kim E, J.Renewable Sustainable Energy., 1, 23101 (2009)
Zhang YL, Wei S, Zhang HY, Liu S, Nawaz F, Xiao FS, J. Colloid Interface Sci., 339(2), 434 (2009)
Kanchanatip E, Grisdanurak N, Thongruang R, Neramittagapong A, Reac. Kinet. Mech. Cat., 103, 227 (2011)
Paola AD, Ikeda S, Marci G, Ohtani B, Palmisano L, Int. J.Photoenergy., 3, 171 (2001)
National Institute of Standards and Technology Chemistry Web-Book (2010). http://webbook.nist.gov/chemistry/. Accessed 12 January 2011.