Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 7, 2011
Accepted August 9, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Low-temperature growth of highly conductive and transparent aluminum-doped ZnO film by ultrasonic-mist deposition
1School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea 2Department of Biochemical Engineering, Dongyang Mirae University, Seoul 152-714, Korea 3Advanced Materials and Process Research Center for IT, Sungkyunkwan University, Suwon 440-746, Korea
sungmcho@skku.edu
Korean Journal of Chemical Engineering, April 2012, 29(4), 525-528(4), 10.1007/s11814-011-0207-1
Download PDF
Abstract
Aluminum-doped ZnO (AZO) thin films are grown by ultrasonic-mist deposition method for the transparent conducting oxides (TCO) applications at low temperatures. The AZO films can be grown at a temperature as low as 200 ℃ with zinc acetylacetonate and aluminum acetylacetonate sources. The lowest resistivity of grown AZO films is 1.0×10^(-3) Ω·cm and the lowest sheet resistance of 1 μm thick films is 10 Ω/□, which is close to that of commercial indium tin oxide (ITO) or Asahi U-type SnO2 : F glass. The highest carrier concentration and mobility are 5.6×1020cm^(-3) and 15 cm2/V·sec, respectively. Optical transmittance of the AZO films is found over 75% for all growth conditions. We believe that the properties of grown AZO films in this study are the best among all reported previously elsewhere by solution processes.
Keywords
References
Kelly PJ, Zhou Y, J. Vac. Sci. Technol. A, 24(5), 1782 (2006)
Park SM, Ikegami T, Ebihara K, Jpn. J. Appl. Phys., 44(11), 8027 (2005)
Sato H, Minami T, Miyata T, Takata S, Ishii M, Thin Solid Films, 246(1-2), 65 (1994)
Mrida S, Basak D, J. Phys. D: Appl. Phys., 40, 6902 (2007)
Tsang WM, Wong FL, Fung MK, Chang JC, Lee CS, Lee ST, Thin Solid Films., 517, 891 (2008)
Nayak PK, Yang J, Kim J, Chung S, Jeong J, Lee C, Hong Y, J. Phys. D: Appl. Phys., 42, 035102 (2009)
Yousfi EB, Weinberger B, Donsanti F, Cowache P, Lincot D, Thin Solid Films, 387(1-2), 29 (2001)
Ashour A, Kaid MA, El-Sayed NZ, Ibrahim AA, Appl. Surf. Sci., 252(22), 7844 (2006)
Rozati SM, Akesteh S, Mater. Charact., 58, 319 (2007)
Wienke J, Booij AS, Thin Solid Films., 516, 4508 (2008)
Olvera ML, Gomez H, Maldonado A, Sol. Energy Mater. Sol. Cells., 91, 1449 (2007)
Kaid MA, Ashour A, Appl. Surf. Sci., 253(6), 3029 (2007)
Lucio-Lopez MA, Luna-Arias MA, Maldonado A, Olvera ML, Acosta DR, Sol. Energy Mater. Sol. Cells., 90, 733 (2006)
Caglar M, Ilican S, Caglar Y, Yakuphanoglu F, J. Mater. Sci.: Mater. Electron., 19, 704 (2008)
Lee JH, Park BO, Mater. Sci. Eng. B., 106, 242 (2004)
MaTY, Lee SC, J. Mater. Sci.: Mater. Electron., 11, 305 (2000)
Lu JG, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Fujita S, J. Cryst. Growth, 299(1), 1 (2007)
Nishinaka H, Kawaharamura T, Fujita S, Jpn. J. Appl. Phys., 46(10A), 6811 (2007)
Maruyama T, Shionaoya J, J. Mater. Sci. Lett., 11, 170 (1992)
Kim H, Gilmore CM, Pique A, Horwitz JS, Mattoussi H, Murata H, Kafai ZH, Chrisey DB, J. Appl. Phys., 86, 6451 (1999)
Jayaraj MK, Antony A, Ramachandram M, Bull. Mater. Sci., 25(3), 227 (2002)
Roth AP, Webb JB, Williams DF, Phys. Rev., B25, 7836 (1982)
Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist C, Phys. Rev., B37, 10244 (1988)
Sato K, Gotoh Y, Wakayama Y, Hayashi Y, Adachi K, Nishimura H, Reports of the Research Labs ; Asahi Glass Co. Ltd., 42, 129 (1992)
Park SM, Ikegami T, Ebihara K, Jpn. J. Appl. Phys., 44(11), 8027 (2005)
Sato H, Minami T, Miyata T, Takata S, Ishii M, Thin Solid Films, 246(1-2), 65 (1994)
Mrida S, Basak D, J. Phys. D: Appl. Phys., 40, 6902 (2007)
Tsang WM, Wong FL, Fung MK, Chang JC, Lee CS, Lee ST, Thin Solid Films., 517, 891 (2008)
Nayak PK, Yang J, Kim J, Chung S, Jeong J, Lee C, Hong Y, J. Phys. D: Appl. Phys., 42, 035102 (2009)
Yousfi EB, Weinberger B, Donsanti F, Cowache P, Lincot D, Thin Solid Films, 387(1-2), 29 (2001)
Ashour A, Kaid MA, El-Sayed NZ, Ibrahim AA, Appl. Surf. Sci., 252(22), 7844 (2006)
Rozati SM, Akesteh S, Mater. Charact., 58, 319 (2007)
Wienke J, Booij AS, Thin Solid Films., 516, 4508 (2008)
Olvera ML, Gomez H, Maldonado A, Sol. Energy Mater. Sol. Cells., 91, 1449 (2007)
Kaid MA, Ashour A, Appl. Surf. Sci., 253(6), 3029 (2007)
Lucio-Lopez MA, Luna-Arias MA, Maldonado A, Olvera ML, Acosta DR, Sol. Energy Mater. Sol. Cells., 90, 733 (2006)
Caglar M, Ilican S, Caglar Y, Yakuphanoglu F, J. Mater. Sci.: Mater. Electron., 19, 704 (2008)
Lee JH, Park BO, Mater. Sci. Eng. B., 106, 242 (2004)
MaTY, Lee SC, J. Mater. Sci.: Mater. Electron., 11, 305 (2000)
Lu JG, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Fujita S, J. Cryst. Growth, 299(1), 1 (2007)
Nishinaka H, Kawaharamura T, Fujita S, Jpn. J. Appl. Phys., 46(10A), 6811 (2007)
Maruyama T, Shionaoya J, J. Mater. Sci. Lett., 11, 170 (1992)
Kim H, Gilmore CM, Pique A, Horwitz JS, Mattoussi H, Murata H, Kafai ZH, Chrisey DB, J. Appl. Phys., 86, 6451 (1999)
Jayaraj MK, Antony A, Ramachandram M, Bull. Mater. Sci., 25(3), 227 (2002)
Roth AP, Webb JB, Williams DF, Phys. Rev., B25, 7836 (1982)
Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist C, Phys. Rev., B37, 10244 (1988)
Sato K, Gotoh Y, Wakayama Y, Hayashi Y, Adachi K, Nishimura H, Reports of the Research Labs ; Asahi Glass Co. Ltd., 42, 129 (1992)