ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 26, 2011
Accepted August 11, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Prevention of blister formation in electrolessly deposited copper film on organic substrates

Manufacturing & Engineering Center, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743, Korea 1BGA Manufacturing Group, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743, Korea 2Department of Chemical Engineering, Pukyong National University, Busan 608-739, Korea
Korean Journal of Chemical Engineering, April 2012, 29(4), 529-533(5), 10.1007/s11814-011-0208-0
downloadDownload PDF

Abstract

Electroless copper (Cu) plating is a key process to provide seed layers for the subsequent Cu electroplating in the printed wiring boards (PWBs). Due to the demand for lower power dissipation at higher temperatures and high signal frequencies, various kinds of organic materials have been newly introduced as substrates. However, they have come with defects such as delamination and/or blisters in the Cu layers on organic substrates, i.e., weak adhesion. Here we demonstrate the root cause and a prevention method of the blister formation. Various parameters affecting the blister formation have been investigated combined with the deposit thickness (internal stress), hydrogen gas evolution, and codeposited Ni content in the electroless Cu plating. It was not obvious that the compressive internal stress in deposits was directly related to the blister formation. Instead, the hydrogen gas evolution clearly turned out to be the key factor, and it was observed that Ni added plating solutions reduced the hydrogen gas evolution significantly and thus produced no blisters in the Cu deposits. The control of blisters would be more critical as the line and space become narrower in the production lines such as ball grid array (BGA) and high density interconnection (HDI).

References

Kobayashi T, Kawasaki J, Mihara K, Honma H, Electrochim. Acta, 47(1-2), 85 (2001)
Nakano H, Suzuki H, Haba T, Yoshida H, Chinda A, Akahoshi H, Elec. Comp. C., 612 (2010)
Huemoeller R, Rusli S, Chiang S, Chen TY, Baron D, Brandt L, Roelfs B, Advancing Microelectronics., 34, 22 (2007)
Bhusari D, Hayden H, Tanikella R, Allen SAB, Kohl PA, J. Electrochem. Soc., 152(10), F162 (2005)
Hutapea P, Grenestedt JL, J. Electron. Packaging., 126, 282 (2004)
Mishra KG, Paramguru RK, J. Electrochem. Soc., 143(2), 510 (1996)
Trieu HH, Chandran RR, Savinell RF, J. Electrochem. Soc., 136, 2218 (1989)
Webb E, Witt C, Andryuschenko T, Reid J, J. Appl. Electrochem., 34(3), 291 (2004)
Vellinga WP, Fedorov A, Hosson JTD, Thin Solid Films., 517, 841 (2008)
Farris RJ, Goldfarb J, Maden MA, Macromol. Symp., 68, 57 (1993)
Aycock TL, Huie NC, Krauss G, Metal. Mate. Trans. B., 5, 1215 (1974)
Rukes RM, Plating., 51, 1066 (1964)
Nakahara S, Okinaka Y, Acta Metall., 31, 713 (1983)
Okinaka Y, Nakahara S, J. Electrochem. Soc., 123, 475 (1976)
Nakahara S, Okinaka Y, J. Electrochem. Soc., 136, 1892 (1989)
van den Meerakker JEAM, de Bakker JWG, J. Appl. Electrochem., 20, 85 (1990)
van den Meerakker JEAM, J. Appl. Electrochem., 11, 387 (1981)
van den Meerakker JEAM, J. Appl. Electrochem., 11, 395 (1981)
Hsu H, Lin K, Lin S, Yeh J, J. Electrochem. Soc., 148(1), C48 (2001)
Al-Mallah AT, El-Raghy SM, Abou-Saif EA, Saada MY, El-Mahairy AE, Plating Surf. Finish., 67, 61 (1980)
Logie GR, Rantell A, Trans. Inst. Met. Finish., 46, 91 (1968)
Bindra P, Roldan JM, Arbach GV, IBM J. Res. Develop., 28 (1984)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로