Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 13, 2011
Accepted August 31, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Photodecomposition of polyphenols in E. camaldulensis leaves in the presence of hybrid catalyst of titania and MCM-41 synthesized from rice husk silica
Faculty of Art and Science, Roi-Et Rajabhat University, Selaphum, Roi-Et 45120, Thailand
Korean Journal of Chemical Engineering, May 2012, 29(5), 555-562(8), 10.1007/s11814-011-0230-2
Download PDF
Abstract
Photocatalytic degradation (PCD) of polyphenols (gallic acid) from E. camaldulensis leaves on TiO2/MCM-41 was investigated in order to get rid of substances harmful to aquatic life. The TiO2/MCM-41 catalysts with titania loading of 2-40% were synthesized by hydrothermal method using rice husk silica and tetraethyl orthotitanate as silica and titania sources, respectively. The obtained catalysts were characterized by XRD, TEM, Zeta potential analyzer, N2 adsorption-desorption and diffuse reflectance UV spectroscopy. Hexagonal array of MCM-41 was confirmed, but its crystallinity decreased dramatically with titania loading. Zeta potential of TiO2/MCM-41s surface varied from 2.11 to 6.00 with the increase of TiO2 from 0 to 100 wt%. Band gap energy of TiO2 shifted from 394.1 to 425.1 nm after adding 60%MCM-41 (40%TiO2/MCM-41), facilitating the ease of OH establishment. Gallic acid - a weak acid solution (pKa=4.0) around 27 ppm was favorable to dissolve in water. PCD of gallic acid was carried out on irradiating of 400W of mercury lamp. The results showed gallic acid solution about 10 wt% properly adsorbed on 10%TiO2/MCM-41 and effectively degraded at pH solution of 9.0. PCD completed at 60 minutes of irradiation time through catalyst concentration of 0.17 g/L and obeyed pseudo-first order. Intermediate products were formic, oxalic, pyruvic, malanic and maleic acids that finally mineralized to CO2 and H2O as downstream products.
Keywords
References
Bravo L, Nutr. Rev., 56, 317 (1998)
Ahmed R, Hoque ATMR, Hossain MK, J. Forest Res.,, 19, 19 (2008)
Gehrke PC, Revell MB, Philbey AW, J. Fish Biol., 43, 265 (1993)
Abelho M, Graca MAS, Hydrobiologia., 324, 195 (1996)
Molina A, Reigosa MJ, Carballeira A, J. Chem. Ecol., 17, 147 (1991)
Azabou S, Najjar W, Gargoubi A, Ghorbel A, Sayadi S, Appl. Catal. B: Environ., 77(1-2), 166 (2007)
Capasso R, Evidente A, Schivo L, Orru G, Marcialis MA, Cristinzio G, J. Appl. Bacter., 79, 393 (1995)
Borja R, Alba J, Banks CJ, Process Biochem., 32(2), 121 (1997)
Kim S, Choi W, Environ. Sci. Technol., 36, 2019 (2002)
Vohra MS, Lee JS, Choi WY, J. Appl. Electrochem., 35(7), 757 (2005)
Artkla S, Kim W, Choi W, Wittayakun J, Appl. Catal. B: Environ., 91(1-2), 157 (2009)
Artkla S, Wantala K, Srinameb BO, Grisdanurak N, Klysubun W, Wittayakun J, Korean J. Chem. Eng., 26(6), 1556 (2009)
Artkla S, Choi W, Wittayakun J, Adv. Mater. Res., 93, 22 (2010)
Zanjanchi MA, Golmojdeh H, Arvand M, J. Hazard. Mater., 169(1-3), 233 (2009)
Eimer GA, Casuscelli SG, Ghione GE, Crivello ME, Herrero ER, Appl. Catal. A: Gen., 298, 232 (2006)
Landau MV, Vradman L, Wang XG, Titelman L, Micropor.Mesopor. Mater., 78, 117 (2005)
Carp O, Huisman CL, Reller A, Prog. Solid State Chem., 32, 33 (2004)
Artkla S, Choi W, Wittayakun J, Environment Asia., 2, 41 (2009)
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
Konstantinou IK, Albanis TA, Appl. Catal. B: Environ., 49(1), 1 (2004)
Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V, Chemosphere., 46, 1173 (2002)
Mai JX, Sun WL, Xiong L, Liu Y, Ni JR, Chemosphere., 73, 600 (2008)
Eslami AC, Pasanphan W, Wagner BA, Buettner GR, Chem.Cent. J., 4, 15 (2010)
Kim S, Choi W, J. Phys. Chem. B, 109(11), 5143 (2005)
Nishiyama N, Saputra H, Park DH, Egashira Y, Ueyama K, J. Membr. Sci., 218(1-2), 165 (2003)
Park DH, Matsuda M, Nishiyama N, Egashira Y, Ueyama K, J. Chem. Eng. Jpn., 34(10), 1321 (2001)
Kim S, Choi W, Environ. Sci. Technol., 36, 2019 (2002)
Maira AJ, Yeung KL, Lee CY, Yue PL, Chan CK, J. Catal., 192(1), 185 (2000)
Beltran FJ, Gimeno O, Rivas FJ, Carbajo M, J. Chem. Technol. Biotechnol., 81(11), 1787 (2006)
Lee JC, Kim MS, Kim CK, Chung CH, Cho SM, Han GY, Yoon KJ, Kim BW, Korean J. Chem. Eng., 20(5), 862 (2003)
Lee HJ, Kang DW, Chi J, Lee DH, Korean J. Chem. Eng., 20(3), 503 (2003)
Ahmed R, Hoque ATMR, Hossain MK, J. Forest Res.,, 19, 19 (2008)
Gehrke PC, Revell MB, Philbey AW, J. Fish Biol., 43, 265 (1993)
Abelho M, Graca MAS, Hydrobiologia., 324, 195 (1996)
Molina A, Reigosa MJ, Carballeira A, J. Chem. Ecol., 17, 147 (1991)
Azabou S, Najjar W, Gargoubi A, Ghorbel A, Sayadi S, Appl. Catal. B: Environ., 77(1-2), 166 (2007)
Capasso R, Evidente A, Schivo L, Orru G, Marcialis MA, Cristinzio G, J. Appl. Bacter., 79, 393 (1995)
Borja R, Alba J, Banks CJ, Process Biochem., 32(2), 121 (1997)
Kim S, Choi W, Environ. Sci. Technol., 36, 2019 (2002)
Vohra MS, Lee JS, Choi WY, J. Appl. Electrochem., 35(7), 757 (2005)
Artkla S, Kim W, Choi W, Wittayakun J, Appl. Catal. B: Environ., 91(1-2), 157 (2009)
Artkla S, Wantala K, Srinameb BO, Grisdanurak N, Klysubun W, Wittayakun J, Korean J. Chem. Eng., 26(6), 1556 (2009)
Artkla S, Choi W, Wittayakun J, Adv. Mater. Res., 93, 22 (2010)
Zanjanchi MA, Golmojdeh H, Arvand M, J. Hazard. Mater., 169(1-3), 233 (2009)
Eimer GA, Casuscelli SG, Ghione GE, Crivello ME, Herrero ER, Appl. Catal. A: Gen., 298, 232 (2006)
Landau MV, Vradman L, Wang XG, Titelman L, Micropor.Mesopor. Mater., 78, 117 (2005)
Carp O, Huisman CL, Reller A, Prog. Solid State Chem., 32, 33 (2004)
Artkla S, Choi W, Wittayakun J, Environment Asia., 2, 41 (2009)
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
Konstantinou IK, Albanis TA, Appl. Catal. B: Environ., 49(1), 1 (2004)
Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V, Chemosphere., 46, 1173 (2002)
Mai JX, Sun WL, Xiong L, Liu Y, Ni JR, Chemosphere., 73, 600 (2008)
Eslami AC, Pasanphan W, Wagner BA, Buettner GR, Chem.Cent. J., 4, 15 (2010)
Kim S, Choi W, J. Phys. Chem. B, 109(11), 5143 (2005)
Nishiyama N, Saputra H, Park DH, Egashira Y, Ueyama K, J. Membr. Sci., 218(1-2), 165 (2003)
Park DH, Matsuda M, Nishiyama N, Egashira Y, Ueyama K, J. Chem. Eng. Jpn., 34(10), 1321 (2001)
Kim S, Choi W, Environ. Sci. Technol., 36, 2019 (2002)
Maira AJ, Yeung KL, Lee CY, Yue PL, Chan CK, J. Catal., 192(1), 185 (2000)
Beltran FJ, Gimeno O, Rivas FJ, Carbajo M, J. Chem. Technol. Biotechnol., 81(11), 1787 (2006)
Lee JC, Kim MS, Kim CK, Chung CH, Cho SM, Han GY, Yoon KJ, Kim BW, Korean J. Chem. Eng., 20(5), 862 (2003)
Lee HJ, Kang DW, Chi J, Lee DH, Korean J. Chem. Eng., 20(3), 503 (2003)