ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 11, 2011
Accepted October 5, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Removal of methylene blue from aqueous solution by a carbon-microsilica composite adsorbent

1College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China 2State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China
Korean Journal of Chemical Engineering, June 2012, 29(6), 775-780(6), 10.1007/s11814-011-0257-4
downloadDownload PDF

Abstract

Microsilica, one kind of industrial solid waste material, was utilized firstly to prepare a carbon-microsilica composite adsorbent (CMS). The prepared adsorbent was characterized with XPS, SEM and Gas sorption experiments. The results indicated the SO3H groups, which are very effective in capturing cationic organic dye, were introduced onto the surface of CMS; the Brunauer-Emmett-Teller (BET) surface area (SBET) and total pore volume (Vtotal) of CMS reach 51m2/g and 0.045 cm3/g, respectively. Meanwhile, the possibility of the utilization of the adsorbent for removal of methylene blue (MB) from aqueous solution was investigated. The effect of pH, contact time and initial MB concentration for MB removal were studied. Equilibrium data were modeled using the Langmuir, Freundlich and Dubinin-Radushkevich equations to describe the equilibrium isotherms. It was found that data fit to the Langmuir equation better than the Freundlich equation. Maximum monolayer adsorption capacity was calculated at different temperatures (298, 308, and 318 K) reach 251.81, 283.76 and 309.70 mg/g, respectively. It was observed that adsorption kinetics obeys the pseudo- first-order equation.

References

Chiou MS, Ho PY, Li HY, Dyes Pigm., 60, 69 (2004)
Alzaydien AS, American J. Environ. Sci., 5, 197 (2009)
Robinson T, McMullan G, Marchant R, Nigam P, Bioresour. Technol., 77(3), 247 (2001)
Crini G, Bioresour. Technol., 97(9), 1061 (2006)
Atia AA, Donia AM, Al-Amrani WA, Chem. Eng. J., 150(1), 55 (2009)
Hameed H, Ahmad AL, Latiff KNA, Dyes Pigm., 75, 143 (2007)
Gaikwad RW, Kinldy SAM, Korean J. Chem. Eng., 26(1), 102 (2009)
Kumar GV, Ramalingam P, Kim MJ, Yoo CK, Kumar MD, Korean J. Chem. Eng., 27, 1025 (2010)
Rauf MA, Qadri SM, Ashraf S, Al-Mansoori KM, Chem. Eng. J., 150(1), 90 (2009)
Azhar SS, Liew A, Suhardy D, Hafiz KF, Hatim MD, America J. Appl. Sci., 2, 1499 (2005)
Banat F, Al-Asheh S, Al-Anbar S, Al-Refaie S, Bull. Eng.Geol. Env., 66, 53 (2007)
Hu ZG, Zhang J, Chan WL, Szeto YS, Polymer, 47(16), 5838 (2006)
Vadivelan V, Kumar KV, J. Colloid Interface Sci., 286(1), 90 (2005)
Hamdaoui O, J. Hazard. Mater., 135(1-3), 264 (2006)
Chung DDL, J. Mater. Sci., 37(4), 673 (2002)
Mang DY, Luo HM, Wang Y, Feng HX, Chem. Lett., 39(4), 424 (2010)
Kaneko K, J. Membr. Sci., 96(1-2), 59 (1994)
Liang X, Zeng M, Qi C, Carbon., 48, 1844 (2010)
Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M, Nature., 438, 178 (2005)
Sing KS, Everett DE, Haul RAW, Moscou L, Pierotti RAW, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
Mousavi HZ, Hosseynifar A, Jahed V, Dehghani SAM, Braz. J. Chem. Eng., 27, 79 (2010)
Lu DD, Cao QL, Cao XJ, Luo F, J. Hazard. Mater., 166(1), 239 (2009)
Lagergren S, Handlingar., 24, 1 (1898)
Ho YS, McKay G, Chem. Eng. J., 70(2), 115 (1998)
Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
Freundlich H, Phys. Chem., 57, 384 (1906)
Freitas PAM, Iha K, Felinto MCFC, Suarez-Iha MEV, J. Colloid Interface Sci., 323(1), 1 (2008)
Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 164(2-3), 473 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로