Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 25, 2011
Accepted September 22, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Diffusion coefficients of supercritical carbon dioxide and its mixtures using molecular dynamic simulations
Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Korea 1Department of Chemical Systems and Engineering, Kyushu University, Fukuoka 812-8581, Japan
Korean Journal of Chemical Engineering, July 2012, 29(7), 935-940(6), 10.1007/s11814-011-0248-5
Download PDF
Abstract
Molecular dynamic simulations have been evaluated for systems containing supercritical carbon dioxide to predict high-pressure diffusion coefficients of binary mixtures. Diffusion coefficients of high boiling compounds in supercritical fluids are important for the design of supercritical extractors, separators and reactors. Since high-pressure experiments are time intensive and difficult to perform, molecular simulations could prove a useful framework to obtain thermodynamic properties; however, their reliability is still in question. In this work, an NVT ensemble single site model molecular dynamic simulation using gear predictor corrector algorithm has been applied to calculate diffusion coefficients of carbon dioxide, naphthalene, 2,6-dimethylnaphthalene and 2,7-dimethylnaphthalene in supercritical carbon dioxide system at 317.5 K. The Lennard-Jones (12-6) and the Coulomb potential function have been combined into_x000D_
an intermolecular potential function to measure the binary molecular interaction. The simulation results of the diffusion coefficients are being compared with similar experimental data near the critical points. The calculated diffusion coefficients for each system behaved as a monotonic decreasing function of the molar density and the molecular simulations results, and the selected experimental data are in good agreement.
References
Nakanishi K, Fluid Phase Equilib., 144(1-2), 217 (1998)
Tsekhanskaya YV, Iomtev MB, Mushkina EV, Russ. J. Phys.Chem., 38, 1173 (1996)
Nishiumi H, Fujita M, Agou K, Fluid Phase Equilib., 117(1-2), 356 (1996)
Ago K, Nishiumi H, Ind. Eng. Chem. Res., 37(5), 1692 (1998)
Higashi H, Iwai Y, Nakamura Y, Yamamoto S, Arai Y, Fluid Phase Equilib., 166(1), 101 (1999)
Fermeglia M, Pricl S, Fluid Phase Equilib., 166(1), 21 (1999)
Kiran E, Brennecke JF, Supercritical fluid engineering science, American Chemical Society Symposium Series, Los Angeles (1991)
Bueno JL, Suarez JJ, Dizy J, Medina I, J. Chem. Eng., 38, 344 (1998)
Nasrabad AE, J. Chem. Phys., 130, 024503 (2009)
Eaton AP, Akgerman A, Ind. Eng. Chem. Res., 36(3), 923 (1997)
Xu WH, Yang JC, Hu YY, J. Phys. Chem. B, 113(14), 4781 (2009)
Fermeglia M, Pricl S, AIChE J., 45(12), 2619 (1999)
Higashi H, Iwai Y, Arai Y, Ind. Eng. Chem. Res., 39(12), 4567 (2000)
Higashi H, Iwai Y, Uchida H, Arai Y, J. Supercrit. Fluids, 13(1), 93 (1998)
Higashi H, Iwai Y, Arai Y, Fluid Phase Equilib., 234(1-2), 51 (2005)
Higashi H, Iwai Y, Takahashi Y, Uchida H, Arai Y, Fluid Phase Equilib., 144(1-2), 269 (1998)
Raabe G, Todd BD, Sadus RJ, J. Chem. Phys., 123, 034511 (2005)
Wick CD, Martin MG, Siepmann JI, J. Phys. Chem. B, 104(33), 8008 (2000)
Vorholz J, Harismiadis VI, Rumpf B, Panagiotopoulos AZ, Maurer G, Fluid Phase Equilib., 170(2), 203 (2000)
Srivastava A, Alleman C, Ghosh S, Lee LJ, Modelling Simul.Mater. Sci. Eng., 18, 22 (2010)
Iwai Y, Uchida H, Koga Y, Arai Y, Mori Y, Ind. Eng. Chem. Res., 35(10), 3782 (1996)
Harris JG, Yung KH, J. Phys. Chem., 99(31), 12021 (1995)
Potoff JJ, Errington JR, Panagiotopoulos AZ, Mol. Phys., 97, 1073 (1999)
Higashi H, Iwai Y, Arai Y, Chem. Eng. Sci., 56(10), 3027 (2001)
White A, DSTO aeronautical and maritime research laboratory, Melbourne (2000)
Meier K, Computer simulation and interpretation of the transport coefficients of the lennard-jones model fluid, Dissertation, University of the Federal Armed Forces Hamburg (2002)
Attig N, Binder K, Grubmueller H, Kremer K, NIC Series., 23, 1 (2004)
Allen MP, Tildesley DJ, Computer simulation of liquids, Clarendon Press, Oxford (1987)
Meier K, Laesecke A, Kabelac S, Int. J. Thermodynam., 22, 161 (2001)
Kolafa J, J. Chem. Phys., 122, 164105 (2005)
Cramer CJ, Essentials of computational chemistry, John Wiley & Sons, Ltd., West Sussex (2004)
Hou LJ, Miskovic ZL, Comput. Phys., arXiv:0806. 3912v2 (2008)
Ware W, Distributed molecular modeling over very-low-bandwidth computer networks, The Fifth Foresight Conference on Molecular Nanotechnology (1997)
McGaughey GB, Gagne M, Rappe AK, J. Biological Chem., 273, 15458 (1998)
O’hern HA, Martin JJ, Ind. Eng. Chem., 47, 2081 (1955)
Etesse P, Zega JA, Kobayashi R, J. Chem. Phys., 97, 2022 (1992)
Lamb DM, Adamy ST, Woo KW, Jonas J, J. Phys. Chem., 93, 5002 (1989)
Tsekhanskaya YV, Iomtev MB, Mushkina EV, Russ. J. Phys.Chem., 38, 1173 (1996)
Nishiumi H, Fujita M, Agou K, Fluid Phase Equilib., 117(1-2), 356 (1996)
Ago K, Nishiumi H, Ind. Eng. Chem. Res., 37(5), 1692 (1998)
Higashi H, Iwai Y, Nakamura Y, Yamamoto S, Arai Y, Fluid Phase Equilib., 166(1), 101 (1999)
Fermeglia M, Pricl S, Fluid Phase Equilib., 166(1), 21 (1999)
Kiran E, Brennecke JF, Supercritical fluid engineering science, American Chemical Society Symposium Series, Los Angeles (1991)
Bueno JL, Suarez JJ, Dizy J, Medina I, J. Chem. Eng., 38, 344 (1998)
Nasrabad AE, J. Chem. Phys., 130, 024503 (2009)
Eaton AP, Akgerman A, Ind. Eng. Chem. Res., 36(3), 923 (1997)
Xu WH, Yang JC, Hu YY, J. Phys. Chem. B, 113(14), 4781 (2009)
Fermeglia M, Pricl S, AIChE J., 45(12), 2619 (1999)
Higashi H, Iwai Y, Arai Y, Ind. Eng. Chem. Res., 39(12), 4567 (2000)
Higashi H, Iwai Y, Uchida H, Arai Y, J. Supercrit. Fluids, 13(1), 93 (1998)
Higashi H, Iwai Y, Arai Y, Fluid Phase Equilib., 234(1-2), 51 (2005)
Higashi H, Iwai Y, Takahashi Y, Uchida H, Arai Y, Fluid Phase Equilib., 144(1-2), 269 (1998)
Raabe G, Todd BD, Sadus RJ, J. Chem. Phys., 123, 034511 (2005)
Wick CD, Martin MG, Siepmann JI, J. Phys. Chem. B, 104(33), 8008 (2000)
Vorholz J, Harismiadis VI, Rumpf B, Panagiotopoulos AZ, Maurer G, Fluid Phase Equilib., 170(2), 203 (2000)
Srivastava A, Alleman C, Ghosh S, Lee LJ, Modelling Simul.Mater. Sci. Eng., 18, 22 (2010)
Iwai Y, Uchida H, Koga Y, Arai Y, Mori Y, Ind. Eng. Chem. Res., 35(10), 3782 (1996)
Harris JG, Yung KH, J. Phys. Chem., 99(31), 12021 (1995)
Potoff JJ, Errington JR, Panagiotopoulos AZ, Mol. Phys., 97, 1073 (1999)
Higashi H, Iwai Y, Arai Y, Chem. Eng. Sci., 56(10), 3027 (2001)
White A, DSTO aeronautical and maritime research laboratory, Melbourne (2000)
Meier K, Computer simulation and interpretation of the transport coefficients of the lennard-jones model fluid, Dissertation, University of the Federal Armed Forces Hamburg (2002)
Attig N, Binder K, Grubmueller H, Kremer K, NIC Series., 23, 1 (2004)
Allen MP, Tildesley DJ, Computer simulation of liquids, Clarendon Press, Oxford (1987)
Meier K, Laesecke A, Kabelac S, Int. J. Thermodynam., 22, 161 (2001)
Kolafa J, J. Chem. Phys., 122, 164105 (2005)
Cramer CJ, Essentials of computational chemistry, John Wiley & Sons, Ltd., West Sussex (2004)
Hou LJ, Miskovic ZL, Comput. Phys., arXiv:0806. 3912v2 (2008)
Ware W, Distributed molecular modeling over very-low-bandwidth computer networks, The Fifth Foresight Conference on Molecular Nanotechnology (1997)
McGaughey GB, Gagne M, Rappe AK, J. Biological Chem., 273, 15458 (1998)
O’hern HA, Martin JJ, Ind. Eng. Chem., 47, 2081 (1955)
Etesse P, Zega JA, Kobayashi R, J. Chem. Phys., 97, 2022 (1992)
Lamb DM, Adamy ST, Woo KW, Jonas J, J. Phys. Chem., 93, 5002 (1989)