Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 28, 2011
Accepted February 15, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3-CeO2-ZrO2 catalysts prepared by a single-step sol-gel method: Effect of acidity and basicity of the catalysts
School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Shinlim-dong, Gwanak-gu, Seoul 151-744, Korea 1Department of Chemical Engineering, Myongji University, Yongin 449-728, Korea
inksong@snu.ac.kr
Korean Journal of Chemical Engineering, August 2012, 29(8), 1019-1024(6), 10.1007/s11814-012-0017-0
Download PDF
Abstract
XGa2O3-CeO2-ZrO2 (X=0, 1, 3, 5, 7, and 9) catalysts were prepared by a single-step sol-gel method with a variation of Ga2O3 content (X, wt%) for use in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. The ratio of cerium oxide:zirconium oxide in the XGa2O3-CeO2-ZrO2 catalysts was fixed to be Ce0.6Zr0.4O2. Effect of acidity and basicity of XGa2O3-CeO2-ZrO2 on the catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide was investigated using NH3-TPD and CO2-TPD experiments, respectively. Experimental results revealed that both acidity and basicity of the catalysts played important roles in determining the catalytic performance in the reaction. The amount of dimethyl carbonate increased with increasing both acidity and basicity of the catalyst. Among the catalysts tested, 3Ga2O3-CeO2-ZrO2, which retained the largest acidity and basicity, exhibited the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide.
References
Keller N, Rebmann G, Keller V, J. Mol. Catal. A-Chem., 317(1-2), 1 (2010)
Delledonne D, Rivetti F, Romano U, Appl. Catal. A: Gen., 221(1-2), 241 (2001)
Babad H, Zeiler AG, Chem. Rev., 73, 75 (1973)
King ST, Catal. Today, 33(1-3), 173 (1997)
Matsuzaki T, Nakamura A, Catal. Surv. Jpn., 1, 77 (1997)
Ju HY, Manju MD, Kim KH, Park SW, Park DW, Korean J. Chem. Eng., 24(5), 917 (2007)
Kim KH, Kim DW, Kim CW, Koh JC, Park DW, Korean J. Chem. Eng., 27(5), 1441 (2010)
Zhang J, Wang F, Wei W, Xiao F, Sun Y, Korean J. Chem. Eng., 27(6), 1744 (2010)
Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K, J. Catal., 192(2), 355 (2000)
Kizlink J, Collect. Czech. Chem. Commun., 58, 1399 (1993)
Sakakura T, Choi JC, Saito Y, Sako T, Polyhedron., 19, 573 (2000)
Kizlink J, Pastucha I, Collect. Czech. Chem. Commun., 60, 687 (1995)
Fang SN, Fujimoto K, Appl. Catal. A: Gen., 142(1), L1 (1996)
Zhao TS, Han YZ, Sun YH, Fuel Process. Technol., 62(2-3), 187 (2000)
Tomishige K, Furusawa Y, Ikeda Y, Asadullah M, Fujimoto K, Catal. Lett., 76(1-2), 71 (2001)
Tomishige K, Kunimori K, Appl. Catal. A: Gen., 237(1-2), 103 (2002)
Jiang CJ, Guo YH, Wang CG, Hu CW, Wu Y, Wang EB, Appl. Catal. A: Gen., 256(1-2), 203 (2003)
La KW, Youn MH, Chung JS, Baeck SH, Song IK, Solid State Phenom., 119, 287 (2007)
Lee HJ, Park S, Jung JC, Song IK, Korean J. Chem. Eng., 28(7), 1518 (2011)
Petre AL, Auroux A, Gelin P, Caldararu M, Ionescu NI, Thernochim. Acta., 79, 117 (2001)
Halasz J, Konya Z, Fudala A, Kiricsi I, Catal. Today, 31(3-4), 293 (1996)
Li YW, He DH, Yuan YB, Cheng ZX, Zhu QM, Fuel, 81(11-12), 1611 (2002)
Sun H, Ding YQ, Duan JZ, Zhang QJ, Wang ZY, Lou H, Zheng XM, Bioresour. Technol., 101(3), 953 (2010)
Lee HJ, Joe W, Song IK, Korean J. Chem. Eng., 29(3), 317 (2012)
Pushkar YN, Parenago OO, Fionov AV, Lunina EV, Colloids Surf. A., 158, 179 (1999)
Li H, Yue Y, Miao C, Xie Z, Hua W, Gao Z, Catal. Commun., 8, 1317 (2007)
Lee HJ, Park S, Song IK, Jung JC, Catal. Lett., 141(4), 531 (2011)
Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK, Korean J. Chem. Eng., 25(1), 41 (2008)
Rao GR, Rajkumar T, J. Colloid Interface Sci., 324(1-2), 134 (2008)
Pantu P, Kim K, Gavalas GR, Appl. Catal. A: Gen., 193(1-2), 203 (2000)
Dhage SR, Gaikwad SP, Muthukumar P, Mater. Lett., 58, 2704 (2004)
Postole G, Chowdhury B, Karmakar B, Pinki K, Banerji J, Auroux A, J. Catal., 269(1), 110 (2010)
Heracleous E, Lemonidou AA, J. Catal., 270(1), 67 (2010)
Ikeda Y, Asadullah M, Fujimoto K, Tomishige K, J. Phys. Chem. B, 105(43), 10653 (2001)
Almusaiteer K, Catal. Commun., 10, 1127 (2009)
Delledonne D, Rivetti F, Romano U, Appl. Catal. A: Gen., 221(1-2), 241 (2001)
Babad H, Zeiler AG, Chem. Rev., 73, 75 (1973)
King ST, Catal. Today, 33(1-3), 173 (1997)
Matsuzaki T, Nakamura A, Catal. Surv. Jpn., 1, 77 (1997)
Ju HY, Manju MD, Kim KH, Park SW, Park DW, Korean J. Chem. Eng., 24(5), 917 (2007)
Kim KH, Kim DW, Kim CW, Koh JC, Park DW, Korean J. Chem. Eng., 27(5), 1441 (2010)
Zhang J, Wang F, Wei W, Xiao F, Sun Y, Korean J. Chem. Eng., 27(6), 1744 (2010)
Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K, J. Catal., 192(2), 355 (2000)
Kizlink J, Collect. Czech. Chem. Commun., 58, 1399 (1993)
Sakakura T, Choi JC, Saito Y, Sako T, Polyhedron., 19, 573 (2000)
Kizlink J, Pastucha I, Collect. Czech. Chem. Commun., 60, 687 (1995)
Fang SN, Fujimoto K, Appl. Catal. A: Gen., 142(1), L1 (1996)
Zhao TS, Han YZ, Sun YH, Fuel Process. Technol., 62(2-3), 187 (2000)
Tomishige K, Furusawa Y, Ikeda Y, Asadullah M, Fujimoto K, Catal. Lett., 76(1-2), 71 (2001)
Tomishige K, Kunimori K, Appl. Catal. A: Gen., 237(1-2), 103 (2002)
Jiang CJ, Guo YH, Wang CG, Hu CW, Wu Y, Wang EB, Appl. Catal. A: Gen., 256(1-2), 203 (2003)
La KW, Youn MH, Chung JS, Baeck SH, Song IK, Solid State Phenom., 119, 287 (2007)
Lee HJ, Park S, Jung JC, Song IK, Korean J. Chem. Eng., 28(7), 1518 (2011)
Petre AL, Auroux A, Gelin P, Caldararu M, Ionescu NI, Thernochim. Acta., 79, 117 (2001)
Halasz J, Konya Z, Fudala A, Kiricsi I, Catal. Today, 31(3-4), 293 (1996)
Li YW, He DH, Yuan YB, Cheng ZX, Zhu QM, Fuel, 81(11-12), 1611 (2002)
Sun H, Ding YQ, Duan JZ, Zhang QJ, Wang ZY, Lou H, Zheng XM, Bioresour. Technol., 101(3), 953 (2010)
Lee HJ, Joe W, Song IK, Korean J. Chem. Eng., 29(3), 317 (2012)
Pushkar YN, Parenago OO, Fionov AV, Lunina EV, Colloids Surf. A., 158, 179 (1999)
Li H, Yue Y, Miao C, Xie Z, Hua W, Gao Z, Catal. Commun., 8, 1317 (2007)
Lee HJ, Park S, Song IK, Jung JC, Catal. Lett., 141(4), 531 (2011)
Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK, Korean J. Chem. Eng., 25(1), 41 (2008)
Rao GR, Rajkumar T, J. Colloid Interface Sci., 324(1-2), 134 (2008)
Pantu P, Kim K, Gavalas GR, Appl. Catal. A: Gen., 193(1-2), 203 (2000)
Dhage SR, Gaikwad SP, Muthukumar P, Mater. Lett., 58, 2704 (2004)
Postole G, Chowdhury B, Karmakar B, Pinki K, Banerji J, Auroux A, J. Catal., 269(1), 110 (2010)
Heracleous E, Lemonidou AA, J. Catal., 270(1), 67 (2010)
Ikeda Y, Asadullah M, Fujimoto K, Tomishige K, J. Phys. Chem. B, 105(43), 10653 (2001)
Almusaiteer K, Catal. Commun., 10, 1127 (2009)