Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 2, 2012
Accepted August 2, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Preparation of anodic aluminum oxide (AAO) nano-template on silicon and its application to one-dimensional copper nano-pillar array formation
School of Chemical Engineering, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea 1Center for Research Facilities, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea
Korean Journal of Chemical Engineering, January 2013, 30(1), 221-227(7), 10.1007/s11814-012-0124-y
Download PDF
Abstract
Anodized aluminum oxide (AAO) nanotemplates were prepared using the Al/Si substrates with an aluminum layer thickness of about 300 nm. A two-step anodization process was used to prepare an ordered porous alumina nanotemplate, and the pores of various sizes and depths were constructed electrochemically through anodic oxidation. The optimum morphological structure for large area application was constructed by adjusting the applied potential, temperature, time, and electrolyte concentration. SEM investigations showed that hexagonal-close-packed alumina nano-pore arrays were nicely constructed on Si substrate, having smooth wall morphologies and well-defined diameters. It is also reported that one dimensional copper nanopillars can be fabricated using the tunable nanopore sized AAO/Si template, by controlling the copper deposition process.
References
Kohli P, Wirtz M, Martin CR, Electroanalysis., 16, 9 (2004)
Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature., 359, 710 (1992)
Masuda H, Fukuda K, Science, 268(5216), 1466 (1995)
Hwang SK, Jeong SH, Hwang HY, Lee OJ, Lee KH, Korean J. Chem. Eng., 19(3), 467 (2002)
Kim TY, Jeong SH, Korean J. Chem. Eng., 25(3), 609 (2008)
Jung M, Choi JW, Kim YK, Oh BK, Korean Chem. Eng. Res., 46(3), 465 (2008)
Lee Y, Jung J, Korean Chem. Eng. Res., 49(1), 28 (2011)
Li Y, Zheng M, Ma L, Shen W, Nanotechnology., 17, 5105 (2006)
Ding Y, Kim YJ, Erlebacher J, Adv. Mater., 16(21), 1897 (2004)
Switzer JA, Hung CJ, Huang LY, Scott Miller F, Zhou Y, Raub ER, Shumsky MG, Bohannan EW, J. Mater. Res., 13, 909 (1998)
Faulds K, Littleford RE, Graham D, Dent G, Smith WE, Anal. Chem., 76, 592 (2004)
Ono S, Saito M, Asoh H, Electrochem. Solid State Lett., 7(7), B21 (2004)
Singh GK, Golovin AA, Aranson IS, Phys. Rev., B., 73, 205422 (2006)
Asoh H, Nishio K, Nakao M, Yokoo A, Tamamura T, Masuda H, J. Vac. Sci. Technol. B, 19(2), 569 (2001)
Sanz O, Echave FJ, Odriozola JA, Montes M, Ind. Eng. Chem. Res., 50(4), 2117 (2011)
Wood GC, O’Sullivan JP, Electrochim. Acta., 15, 1865 (1970)
Setoh S, Miyata A, Sci. Pap. Inst. Phys. Chem. Res., (Jpn.)., 17, 189 (1932)
Ebihara K, Takahashi H, Nagayama M, J. Met. Finish. Jpn., 33, 156 (1982)
Li F, Zhang L, Robert, Metzger M, Chem. Mater., 10, 2470 (1998)
Schwirn K, Lee W, Hillebrand R, Steinhart M, Gosele KNU, ACS Nano., 2, 302 (2008)
Patermarakis G, Karayannis HS, Electrochim. Acta, 40(16), 2647 (1995)
Patermarakis G, Nicolopoulos N, J. Catal., 187(2), 311 (1999)
Patermarakis G, Tzouvelekis D, Electrochim. Acta, 39(16), 2419 (1994)
Johansson A, Torndahl T, Ottosson LM, Boman M, Carlsson JO, Mater. Sci. Eng., C., 23, 823 (2003)
Keilbach A, Moses J, RalfKohn, Doblinger M, Bein T, Chem. Mater., 22, 5430 (2010)
Inguanta R, Piazza S, Sunseri C, Appl. Surf. Sci., 255(21), 8816 (2009)
Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature., 359, 710 (1992)
Masuda H, Fukuda K, Science, 268(5216), 1466 (1995)
Hwang SK, Jeong SH, Hwang HY, Lee OJ, Lee KH, Korean J. Chem. Eng., 19(3), 467 (2002)
Kim TY, Jeong SH, Korean J. Chem. Eng., 25(3), 609 (2008)
Jung M, Choi JW, Kim YK, Oh BK, Korean Chem. Eng. Res., 46(3), 465 (2008)
Lee Y, Jung J, Korean Chem. Eng. Res., 49(1), 28 (2011)
Li Y, Zheng M, Ma L, Shen W, Nanotechnology., 17, 5105 (2006)
Ding Y, Kim YJ, Erlebacher J, Adv. Mater., 16(21), 1897 (2004)
Switzer JA, Hung CJ, Huang LY, Scott Miller F, Zhou Y, Raub ER, Shumsky MG, Bohannan EW, J. Mater. Res., 13, 909 (1998)
Faulds K, Littleford RE, Graham D, Dent G, Smith WE, Anal. Chem., 76, 592 (2004)
Ono S, Saito M, Asoh H, Electrochem. Solid State Lett., 7(7), B21 (2004)
Singh GK, Golovin AA, Aranson IS, Phys. Rev., B., 73, 205422 (2006)
Asoh H, Nishio K, Nakao M, Yokoo A, Tamamura T, Masuda H, J. Vac. Sci. Technol. B, 19(2), 569 (2001)
Sanz O, Echave FJ, Odriozola JA, Montes M, Ind. Eng. Chem. Res., 50(4), 2117 (2011)
Wood GC, O’Sullivan JP, Electrochim. Acta., 15, 1865 (1970)
Setoh S, Miyata A, Sci. Pap. Inst. Phys. Chem. Res., (Jpn.)., 17, 189 (1932)
Ebihara K, Takahashi H, Nagayama M, J. Met. Finish. Jpn., 33, 156 (1982)
Li F, Zhang L, Robert, Metzger M, Chem. Mater., 10, 2470 (1998)
Schwirn K, Lee W, Hillebrand R, Steinhart M, Gosele KNU, ACS Nano., 2, 302 (2008)
Patermarakis G, Karayannis HS, Electrochim. Acta, 40(16), 2647 (1995)
Patermarakis G, Nicolopoulos N, J. Catal., 187(2), 311 (1999)
Patermarakis G, Tzouvelekis D, Electrochim. Acta, 39(16), 2419 (1994)
Johansson A, Torndahl T, Ottosson LM, Boman M, Carlsson JO, Mater. Sci. Eng., C., 23, 823 (2003)
Keilbach A, Moses J, RalfKohn, Doblinger M, Bein T, Chem. Mater., 22, 5430 (2010)
Inguanta R, Piazza S, Sunseri C, Appl. Surf. Sci., 255(21), 8816 (2009)