Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 17, 2012
Accepted July 19, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A study on sulfonated poly(arylene ether sulfone) membranes containing two different types of SiO2 for a high temperature and low-humidified polymer electrolyte fuel cell
1Fuel Cell Research Center, Korea Institute of Energy Research, Gajeong-dong, Yuseong-gu, Daejeon 305-343, Korea 2Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701, Korea 3Department of Environmental Engineering, Sangmyung University, 300, Anseo-dong, Dongnam-gu, Cheonan-si 330-720, Korea
cozmoz67@kier.re.kr
Korean Journal of Chemical Engineering, January 2013, 30(1), 87-94(8), 10.1007/s11814-012-0120-2
Download PDF
Abstract
Two different types of silica oxide were prepared as filler in sulfonated polymers for fuel cell applications operated under water deficient environment. SiO2 nanoparticle and thiol-embedded SiO2 nanoparticles were mechanically mixed with sulfonated (arylene ether sulfone) solutions, and then the mixtures were cast to prepare composite membranes. The composite membranes with different amount of SiO2 were prepared to investigate the effect of two types of SiO2 nanoparticles on ionic conductivity with relative humidity at 120 ℃. In addition, ion exchange capacity, water uptake, thermogravitational analysis, differential scanning calorimetry were studied. As results, the composite membranes containing thiol-embedded SiO2 showed better water-channel forming ability at low relative humidity less than 50% in this study. Under full hydration of the composite membranes, the composite membranes containing pure SiO2 nano-particles have higher ionic conductivity since the thiol-embedded SiO2 might cause steric hindrance to make water channel well connected. Thus, below 50% relative humidity, the composite membranes containing 10 wt% of thiol-embedded SiO2 showed the best ionic conductivity. It is very promising for polymer electrolyte fuel cells operated normally under 50% relative humidity at cathode.
Keywords
References
Lee KK, Kim TH, Hwang TS, Hong YT, Membr. J., 20, 278 (2010)
Goh YT, Patel R, Im SJ, Kim JH, Min BR, Korean J. Chem. Eng., 26(2), 518 (2009)
Im SJ, Patel R, Shin SJ, Kim JH, Min BR, Korean J. Chem. Eng., 25(4), 732 (2008)
Hagihara H, Uchida H, Watanabe M, Electrochim. Acta, 51(19), 3979 (2006)
Shao ZG, Xu HF, Li MQ, Hsing IM, Solid State Ion., 177(7-8), 779 (2006)
Rodgers MP, Shi ZQ, Holdcroft S, J. Membr. Sci., 325(1), 346 (2008)
Jiang RC, Kunz HR, Fenton JM, J. Membr. Sci., 272(1-2), 116 (2006)
Zulfikar MA, Mohammad AW, J. Matematika Dan Sains., 11, 134 (2006)
Kim YM, Choi SH, Lee HC, Hong MZ, Kim K, Lee HI, Electrochim. Acta, 49(26), 4787 (2004)
Pu HT, Liu L, Chang ZH, Yuan JJ, Electrochim. Acta, 54(28), 7536 (2009)
Colicchio I, Demco DE, Baias M, Keul H, Moeller M, J. Membr. Sci., 337(1-2), 125 (2009)
Lee CH, Min KA, Park HB, Hong YT, Jung BO, Lee YM, J. Membr. Sci., 303(1-2), 258 (2007)
Park KT, Jung UH, Choi DW, Chun K, Lee HM, Kim SH, J. Power Sources, 177(2), 247 (2008)
Tominaga Y, Hong IC, Asai S, Sumita M, J. Power Sources, 171(2), 530 (2007)
Yoon KS, Choi JH, Hong YT, Hong SK, Lee SY, Electrochem.Commun., 11, 1492 (2009)
Lin YF, Yen CY, Ma CCM, Liao SH, Hung CH, Hsiao YH, J. Power Sources, 165(2), 692 (2007)
Wang F, Hickner M, Ji Q, Harrison W, Mecham J, Zawodzinski TA, McGrath JE, Macromol. Symp., 175, 387 (2001)
Di Noto V, Gliubizzi R, Negro E, Pace G, J. Phys. Chem. B, 110(49), 24972 (2006)
Yu LY, Xu ZL, Shen HM, Yang H, J. Membr. Sci., 337(1-2), 257 (2009)
Chang HY, Lin CW, J. Membr. Sci., 218(1-2), 295 (2003)
Zhai YF, Zhang HM, Hu JW, Yi BL, J. Membr. Sci., 280(1-2), 148 (2006)
Li SW, Liu ML, Electrochim. Acta, 48(28), 4271 (2003)
Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S, Macromolecules, 37(21), 7960 (2004)
Mikami T, Miyatake K, Watanabe M, American Chemical Society., 1714 (2010)
Chang JH, Park JH, Park GG, Kim CS, Park OO, J. Power Sources, 124(1), 18 (2003)
Lin R, Li B, Hou YP, Ha JM, Int. J. Hydrog. Energy., 34, 2369 (2009)
Kim TH, Choi YW, Kim CS, Yang TH, Kim MN, J.Mater. Chem., 21, 7612 (2011)
Gierke TD, Munn GE, Wilson FC, J. Polym. Sci., Polym.Phys. Ed., 19(11), 1687 (1981)
de Almeida SH, Kawano Y, J. Therm. Anal. Calorim., 58, 569 (1999)
Sekhon SS, Park JS, Choi YW, Phy. Chem. Chem. Phy., 12(41), 13763 (2010)
Sekhon SS, Park JS, Baek JS, Yim SD, Yang TH, Kim CS, Chem. Mater., 22(3), 803 (2010)
Baek JS, Park JS, Sekhon SS, Yang TH, Shul YG, Choi JH, Fuel Cells., 5, 762 (2010)
Sekhon SS, Park JS, Cho E, Yoon YG, Kim CS, Lee WY, Macromolecules, 42(6), 2054 (2009)
Cho E, Park JS, Sekhon SS, Park GG, Yang TH, Lee WY, Kim CS, Park SB, J. Electrochem. Soc., 156(2), B197 (2009)
Goh YT, Patel R, Im SJ, Kim JH, Min BR, Korean J. Chem. Eng., 26(2), 518 (2009)
Im SJ, Patel R, Shin SJ, Kim JH, Min BR, Korean J. Chem. Eng., 25(4), 732 (2008)
Hagihara H, Uchida H, Watanabe M, Electrochim. Acta, 51(19), 3979 (2006)
Shao ZG, Xu HF, Li MQ, Hsing IM, Solid State Ion., 177(7-8), 779 (2006)
Rodgers MP, Shi ZQ, Holdcroft S, J. Membr. Sci., 325(1), 346 (2008)
Jiang RC, Kunz HR, Fenton JM, J. Membr. Sci., 272(1-2), 116 (2006)
Zulfikar MA, Mohammad AW, J. Matematika Dan Sains., 11, 134 (2006)
Kim YM, Choi SH, Lee HC, Hong MZ, Kim K, Lee HI, Electrochim. Acta, 49(26), 4787 (2004)
Pu HT, Liu L, Chang ZH, Yuan JJ, Electrochim. Acta, 54(28), 7536 (2009)
Colicchio I, Demco DE, Baias M, Keul H, Moeller M, J. Membr. Sci., 337(1-2), 125 (2009)
Lee CH, Min KA, Park HB, Hong YT, Jung BO, Lee YM, J. Membr. Sci., 303(1-2), 258 (2007)
Park KT, Jung UH, Choi DW, Chun K, Lee HM, Kim SH, J. Power Sources, 177(2), 247 (2008)
Tominaga Y, Hong IC, Asai S, Sumita M, J. Power Sources, 171(2), 530 (2007)
Yoon KS, Choi JH, Hong YT, Hong SK, Lee SY, Electrochem.Commun., 11, 1492 (2009)
Lin YF, Yen CY, Ma CCM, Liao SH, Hung CH, Hsiao YH, J. Power Sources, 165(2), 692 (2007)
Wang F, Hickner M, Ji Q, Harrison W, Mecham J, Zawodzinski TA, McGrath JE, Macromol. Symp., 175, 387 (2001)
Di Noto V, Gliubizzi R, Negro E, Pace G, J. Phys. Chem. B, 110(49), 24972 (2006)
Yu LY, Xu ZL, Shen HM, Yang H, J. Membr. Sci., 337(1-2), 257 (2009)
Chang HY, Lin CW, J. Membr. Sci., 218(1-2), 295 (2003)
Zhai YF, Zhang HM, Hu JW, Yi BL, J. Membr. Sci., 280(1-2), 148 (2006)
Li SW, Liu ML, Electrochim. Acta, 48(28), 4271 (2003)
Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S, Macromolecules, 37(21), 7960 (2004)
Mikami T, Miyatake K, Watanabe M, American Chemical Society., 1714 (2010)
Chang JH, Park JH, Park GG, Kim CS, Park OO, J. Power Sources, 124(1), 18 (2003)
Lin R, Li B, Hou YP, Ha JM, Int. J. Hydrog. Energy., 34, 2369 (2009)
Kim TH, Choi YW, Kim CS, Yang TH, Kim MN, J.Mater. Chem., 21, 7612 (2011)
Gierke TD, Munn GE, Wilson FC, J. Polym. Sci., Polym.Phys. Ed., 19(11), 1687 (1981)
de Almeida SH, Kawano Y, J. Therm. Anal. Calorim., 58, 569 (1999)
Sekhon SS, Park JS, Choi YW, Phy. Chem. Chem. Phy., 12(41), 13763 (2010)
Sekhon SS, Park JS, Baek JS, Yim SD, Yang TH, Kim CS, Chem. Mater., 22(3), 803 (2010)
Baek JS, Park JS, Sekhon SS, Yang TH, Shul YG, Choi JH, Fuel Cells., 5, 762 (2010)
Sekhon SS, Park JS, Cho E, Yoon YG, Kim CS, Lee WY, Macromolecules, 42(6), 2054 (2009)
Cho E, Park JS, Sekhon SS, Park GG, Yang TH, Lee WY, Kim CS, Park SB, J. Electrochem. Soc., 156(2), B197 (2009)