ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 5, 2012
Accepted July 17, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Arsenic removal from drinking water by electrocoagulation using iron electrodes

Department of Environmental Engineering, Dokuz Eylul University, 35160 Buca, Izmir, Turkey 1Department of Environmental Engineering, Pamukkale University, 20070 Kinikli, Denizli, Turkey
mbilici@pau.edu.tr
Korean Journal of Chemical Engineering, October 2013, 30(10), 1889-1895(7), 10.1007/s11814-013-0128-2
downloadDownload PDF

Abstract

Arsenic removal from drinking water was investigated using electrocoagulation (EC) followed by filtration. A sand filter was used to remove flocs generated in the EC process. Experiments were performed in a batch electrochemical reactor using iron electrodes with monopolar parallel electrode connection mode to assess their efficiency. The effects of several operating parameters on arsenic removal such as current density (1.5-9.0 mA cm^(-2)), initial arsenic concentration (50-500 μg L^(-1)), operating time (0-15 min), electrode surface area (266-665 cm2), and sodium chloride concentrations (0.01 and 0.02M) were examined. The EC process was able to decrease the residual arsenic concentration to less than 10 μg L^(-1). Optimum operating conditions were determined as an operating time of 5 min and current density of 4.5 mA cm^(-2) at pH of 7. The optimum electrode surface area for arsenic removal was found to be 266 cm2 taking into consideration cost effectiveness. The residual iron concentration increased with increasing residence time, and maximum residual iron value was measured as 287 μg L^(-1) for electrode surface area of 266 cm2. The addition of sodium chloride had no significant effect on residual arsenic concentration, but an increase in current density was observed.

References

Smedley PL, Kinniburgh DG, Appl. Geochem., 17, 517 (2002)
Ali MA, International Review for Environmental Strategies., 6, 329 (2006)
Bhattacharyya R, Chatterjee D, Nath B, Jana J, Jacks G, Vahter M, Mol. Cell. Biochem., 253, 347 (2003)
Halima MA, Majumder RK, Nessa SA, Hiroshiro Y, Uddin MJ, Shimada J, Jinno K, J. Hazard. Mater., 164(2-3), 1335 (2009)
Harvey CF, Ashfaque KN, Yu W, Badruzzaman ABM, Ali MA, Oates PM, Michael HA, Neumann RB, Beckie R, Islam S, Ahmed MF, Chem. Geol., 228, 112 (2006)
Cory DC, Rahman T, Ecol. Econ., 68, 1825 (2009)
Farias SS, Casa VA, Vazquez C, Ferpozzi L, Pucci GN, Cohen IM, Sci. Total Environ., 309, 187 (2003)
Sancha AM, Journal of Health Population and Nutrition., 24, 267 (2006)
Wang S, Mulligan CN, Sci. Total Environ., 366, 701 (2006)
Yuan T, Luo Q, Hu J, Ong S, Ng W, J. Environ. Sci. Heal. A., 38(9), 1731 (2003)
Appleyard SJ, Angeloni J, Watkins R, Appl. Geochem., 21, 83 (2006)
Drahota P, Rohovec J, Filippi M, Mihaljevic M, Rychlovsky P, Cerveny V, Pertold Z, Sci. Total Environ., 407, 3372 (2009)
Gregor J, Water Res., 35, 1659 (2001)
Ross-Larson B, Coquereaumont M, Trott C, (Eds.), Human Development Report Beyond Scarcity: Power, Poverty and Global Water Crisis, Human Development Report, Palgrave Macmillan, Retrieved September 26, 2012, from http://hdr.undp.org/en/media/ HDR06-complete.pdf (2006)
Colak M, Gemici U, Tarcan G, Water Air Soil Poll., 149, 127 (2003)
Col M, Col C, Hum. Ecol. Risk Assess., 10, 461 (2004)
Dogan M, Dogan AU, Environ. Geochem. Hlth., 29, 119 (2007)
Gemici U, Tarcan G, Helvac C, Somay AM, Appl. Geochem., 23, 2462 (2008)
Lee Y, Um I, Yoon J, Environ. Sci. Technol., 37, 5750 (2003)
Moore K, Treatment of arsenic contaminated groundwater using oxidation and membrane filtration, Master of Applied Science in Civil Engineering, University of Waterloo (2005)
Johnston R, Heijnen H, Wurzel P, United Nations synthesis report on arsenic in drinking water, chapter 6: safe water technology, Available at www.cepis.ops-oms.org/bvsacd/who/arsin.pdf. (2001)
Fujimoto M, The Removal of arsenic from drinking water by carbon adsorption, Master of Science, Department of Civil and Environmental Engineering, Michigan State University (2001)
Wickramasinghe SR, Han BB, Zimbron J, Shen Z, Karim MN, Desalination, 169(3), 231 (2004)
Kartinen EO, Martin CJ, Desalination., 103, 79 (1995)
Viraraghavan T, Subramanian KS, Aruldoss JA, Water Sci.Technol., 40, 69 (1999)
U. S. EPA, Arsenic treatment technologies for soil, waste, and water, U.S. EPA/National Service Center for Environmental Publications, Cincinnati (2002)
Zouboulis A, Katsoyiannis I, Sep. Sci. Technol., 37(12), 2859 (2002)
An B, Steinwinder TR, Zhao D, Water Res., 39, 4993 (2005)
Gholami MM, Mokhtari MA, Aameri A, Fard MRA, Desalination, 200(1-3), 725 (2006)
Banerjee K, Amy GL, Prevost M, Nour S, Jekel M, Gallagher PM, Blumenschein CD, Water Res., 42, 3371 (2008)
Kobya M, Gebologlu U, Ulu F, Oncel S, Demirbas E, Electrochim. Acta, 56(14), 5060 (2011)
Mohora E, Roncevic S, Dalmacija B, Agbaba J, Watson M, Karlovic E, Dalmacija M, J. Hazard. Mater., 235-236, 257 (2012)
Lacasa E, Canizares P, Saez C, Fernandez FJ, Rodrigo MA, Sep. Purif. Technol., 79(1), 15 (2011)
Zhao X, Zhang B, Liu H, Qu J, Chemosphere., 83, 726 (2011)
Holt PK, Barton GW, Wark M, Mitchell CA, Colloids Surf.A., 211, 233 (2002)
Wan W, Pepping TJ, Banerji T, Chaudhari S, Giammar DE, Water Res., 45, 384 (2011)
Kumar PR, Chaudhari S, Khilar KC, Mahajan SP, Chemosphere., 55(9), 1245 (2004)
Lakshmanan D, Clifford A, Samanta G, Environ. Sci. Technol., 43(10), 3853 (2009)
Kobya M, Akyol A, Demirbas E, Oncel ME, Environmental Progress Sustainable Energy, DOI:10.1002/ep.11765.
Zhao X, Zhang BF, Liu HJ, Qu JH, J. Hazard. Mater., 184(1-3), 472 (2010)
Balasubramanian N, Madhavan K, Chem. Eng. Technol., 24(5), 519 (2001)
Guerin T, Molenat N, Astruc A, Pinel R, Appl. Organomet.Chem., 14, 401 (2000)
Kumar PR, Chaudhari S, Khilar KC, Mahajan SP, Chemosphere., 55, 1245 (2004)
Kobya M, Ulu F, Gebologlu U, Demirbas E, Oncel MS, Sep. Purif. Technol., 77(3), 283 (2011)
Vasudevan S, Lakshmi J, Sozhan G, Sep. Sci. Technol., 45(9), 1313 (2010)
Thella K, Verma B, Srivastava VC, Srivastava KK, J. Environ. Sci. Heal. A., 43, 554 (2008)
Kumar NS, Goel S, J. Hazard. Mater., 173(1-3), 528 (2010)
Martinez-Villafane JF, Montero-Ocampo C, Garcia-Lara AM, J. Hazard. Mater., 172(2-3), 1617 (2009)
Chaudhari S, Kumar PR, Khilar KC, Mahajan SP, Chemosphere., 55, 1245 (2004)
Flores OJ, Nava JL, Carreno G, Elorza E, Martinez F, Chem.Eng. Sci., 97, 1 (2013)
Holt P, Barton GM, Mitchell C, Electrocoagulation as a wastewater treatment, The Third Annual Australian Environmental Engineering Research Event, Sydney (2006)
Ihos M, Negrea A, Lupa L, Ciopec M, Negrea P, Chem. Bull., 50(64), 1 (2005)
Hansen HK, Nunez P, Raboy D, Schippacasse I, Grandon R, Electrochim. Acta, 52(10), 3464 (2007)
Gomes JAG, Daida P, Kesmez M, Weir M, Moreno H, Parga JR, Irwin G, McWhinney H, Grady T, Peterson E, Cocke DL, J. Hazard. Mater., 139(2), 220 (2007)
Larue O, Vorobiev E, Vu C, Durand B, Sep. Purif. Technol., 31(2), 177 (2003)
Bayramoglu M, Eyvaz M, Kobya M, Chem. Eng. J., 128(2-3), 155 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로