ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 23, 2013
Accepted July 17, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Surface chemistry and adsorption mechanism of cadmium ion on activated carbon derived from Garcinia mangostana shell

Environmental Engineering Laboratory, Department of Civil Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia 1Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
pichiahsaravanan@gmail.com
Korean Journal of Chemical Engineering, October 2013, 30(10), 1904-1910(7), 10.1007/s11814-013-0130-8
downloadDownload PDF

Abstract

A detailed surface characterizations and adsorption mechanism of Cd2+ on chemical activated carbon (CAC) prepared from Garnicia mangostana shell were investigated. The activation is accomplished in self-generating atmosphere using phosphoric acid as activating agent. The characterizations performed are elemental analysis, functional group identification, N2 adsorption isotherm and surface charges. Adsorption mechanism of metal ion was tested using Cd2+ as model ion. CAC achieved BET surface area of 1,498 m2/g with a mixture of micro and mesopores. The point of zero charge is observed to be at pH 2.8 and the optimum pH for Cd2+ adsorption on CAC is 12. The adsorption isotherm followed the Freundlich model, and the adsorption kinetics was explained by pseudo-second order kinetic model. From thermodynamic studies, the adsorption was found to be physical adsorption. X-ray photoelectron spectroscopy_x000D_ (XPS) confirmed the adsorption of Cd2+ onto CAC as +2 oxidation state.

References

Tan GQ, Xiao D, J. Hazard. Mater., 164(2-3), 1359 (2009)
Anandkumar J, Mandal B, J. Hazard. Mater., 186(2-3), 1088 (2011)
Sharma YC, Uma, J. Chem. Eng. Data., 55, 435 (2009)
Anandkumar J, Mandal B, Asia-Pac. J. Chem. Eng., 7, 928 (2012)
Chen YD, Huang BA, Huang MJ, Cai BG, J. Taiwan Inst.Chem. Eng., 42, 837 (2011)
Lo SF, Wang SY, Tsai MJ, Lin LD, Chem. Eng. Res. Des., 90(9), 1397 (2012)
Foo KY, Hameed BH, Chem. Eng. J., 180, 66 (2012)
Kang YL, Toh SKS, Monash P, Ibrahim S, Saravanan P, Asia-Pac. J. Chem. Eng., DOI:10.1002/apj.1725. (2013)
Zein R, Suhaili R, Earnestly F, Indrawati, Munaf E, J. Hazard. Mater., 181(1-3), 52 (2010)
Larkin P, IR and raman spectroscopy; principles and spectral interpretation, Elsevier, Oxford (2011)
Sheng PX, Ting YP, Chen JP, Hong L, J. Colloid Interface Sci., 275(1), 131 (2004)
Puziy AM, Poddubnaya OI, Socha RP, Gurgul J, Wisniewski M, Carbon., 46, 2113 (2008)
Foo KY, Hameed BH, Chem. Eng. J., 187, 53 (2012)
Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
Deng H, Lu JJ, Li GX, Zhang GL, Wang XG, Chem. Eng. J., 172(1), 326 (2011)
Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Hashim R, J. Hazard. Mater., 170(1), 357 (2009)
Haghseresht F, Lu GQ, Energy Fuels, 12(6), 1100 (1998)
Gueu S, Yao B, Adouby K, Ado G, Int. J. Environ. Sci. Technol., 4, 11 (2007)
Demirbas E, Dizge N, Sulak MT, Kobya M, Chem. Eng. J., 148(2-3), 480 (2009)
Lalhruaitluanga H, Jayaram K, Prasad MNV, Kumar KK, J. Hazard. Mater., 175(1-3), 311 (2010)
Pereira MFR, Soares SF, Orfao JJM, Figueiredo JL, Carbon., 41, 811 (2003)
Leon CALY, Solar JM, Calemma V, Radovic LR, Carbon., 30, 797 (1992)
Srivastava VC, Mall ID, Mishra IM, Chem. Eng. J., 117(1), 79 (2006)
Mavros P, Zouboulis AI, Lazaridis NK, Environ. Technol., 14, 83 (1993)
Ricou P, Lecuyer I, Le Cloirec P, Environ. Technol., 19, 1005 (1998)
Abu Al-Rub FA, El-Naas MH, Benyahia F, Ashour I, Process Biochem., 39, 1767 (2004)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로