ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 2, 2013
Accepted July 31, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Synthesis and applications of composite cathode based on Sm0.5Sr0.5CoO3-δ for solid oxide fuel cell

Fuel Cell Project, Research Institute of Industrial Science and Technology, Pohang 790-330, Korea 1School of Materials Science & Engineering, Yeungnam University, Gyeongsan 712-749, Korea
Korean Journal of Chemical Engineering, November 2013, 30(11), 2017-2025(9), 10.1007/s11814-013-0144-2
downloadDownload PDF

Abstract

Cobaltite based perovskites, such as Sm0.5Sr0.5CoO3-δ (SSC), are attractive solid oxide fuel cell (SOFC) cathodes due to their high electrochemical activity and electrical conductivity. To obtain higher fuel cell performance with smaller particles, nano-sized SSC powders were synthesized by a complex method with/without carbon black, HB170. However, during synthesis, carbon black reacted with Sr, and unfortunately formed SrCO3. To obtain pure perovskite SSC, a calcination temperature of 900 ℃ is needed. At 680 oC, an SOFC with SSC (calcined at 700 ℃ and synthesized without HB170) exhibited a higher fuel cell performance, of 0.68W·cm.2, than that with SSCHB (calcined at 900 ℃ and synthesized with HB170), of 0.58W·cm^(-2). Adding GDC for composite cathode is more effective in SSCHB porous cathodes than in SSC porous cathodes. At 680 ℃, the composite cathode of SSCHB6-GDC4 exhibited the highest maximum power density of 0.72W·cm^(-2) which results from the combined effects of lowered charge transfer polarization_x000D_ and mass transfer polarization. To obtain higher fuel cell performance, optimum composition and processes are necessary.

References

Jiang SP, Solid State Ion., 146(1-2), 1 (2002)
Jørgensen MJ, Mogensen M, J. Electrochem. Soc., 147, A433 (2001)
Dusastre V, Kilner JA, Solid State Ion., 126(1-2), 163 (1999)
Kuscer D, Holc J, Hrovat S, Kolar D, J. Eur. Ceram. Soc., 21, 1817 (2001)
Mai A, Haanappel VAC, Uhlenbruck S, Tietz F, Stover D, Solid State Ion., 176(15-16), 1341 (2005)
Mai A, Haanappel VAC, Tietz F, Stover D, Solid State Ion., 177(19-25), 2103 (2006)
Teraoka Y, Zhang HM, Okamoto K, Yamazoe N, Mater. Res.Bull., 23, 51 (1988)
Fleig J, J. Power Sources, 105(2), 228 (2002)
Adler SB, Lane JA, Steele BC, J. Electrochem. Soc., 143(11), 3554 (1996)
Kilner JA, Desouza RA, Fullarton IC, Solid State Ion., 86-88, 703 (1996)
Fleig J, Annu. Rev. Mater. Res., 33, 361 (2003)
Zhang XG, Robertson M, Yick S, Deces-Petit C, Styles E, Qu W, Xie YS, Hui R, Roller J, Kesler O, Maric R, Ghosh D, J. Power Sources, 160(2), 1211 (2006)
Yang S, He T, He Q, J. Alloy Compd., 450, 400 (2008)
Guo Y, Shi H, Ran R, Shao Z, In. J. Hydrog. Energy., 34, 9496 (2009)
Zhou W, Shao Z, Ran R, Cai R, Electron. Commun., 10, 1647 (2008)
Yang YL, Chen CL, Chen SY, Chu CW, Jacobson AJ, J. Electrochem. Soc., 147(11), 4001 (2000)
Liu Y, Rauch W, Zha SW, Liu ML, Solid State Ion., 166(3-4), 261 (2004)
Murray EP, Sever MJ, Barnett SA, Solid State Ion., 148(1-2), 27 (2002)
Shao Z, Haile SM, Nature., 431, 170 (2004)
Zhu W, Lu Z, Li S, Wei B, Miao J, Huang X, Chen K, Aif N, Su W, J. Alloy Compd., 465, 274 (2008)
Fukunaga H, Koyama M, Takahashi N, Wen C, Yamada K, Solid State Ion., 132(3-4), 279 (2000)
Tu HY, Takeda Y, Imanishi N, Yamamoto O, Solid State Ion., 100(3-4), 283 (1997)
Baumann FS, Maier J, Fleig J, Solid State Ion., 179(21-26), 1198 (2008)
Jung HG, Sun YK, Jung HY, Park JS, Kim HR, Kim GH, Lee HW, Lee JH, Solid State Ion., 179(27-32), 1535 (2008)
Suzuki T, Liang B, Yamaguchi T, Sumi H, Hamamoto K, Fujishiro Y, J. Power Sources., 199, 170 (2012)
Haanappel VAC, Mertens J, Rutenbeck D, Tropartz C, Herzhof W, Sebold D, Tietz F, J. Power Sources, 141(2), 216 (2005)
Gunasekaran N, Saddawi S, Carberry JJ, J. Catal., 159(1), 107 (1996)
Liu YA, Zheng HT, Liu JR, Zhang T, Chem. Eng. J., 89(1-3), 213 (2002)
Dutta A, Mukhopadhyay J, Basu RN, J. Eur. Cera. Soc., 29, 2003 (2009)
Shukla S, Seal S, Vij R, Bandyopadhyay S, Nano Lett., 3, 397 (2003)
Zhu QS, Fan B, Solid State Ion., 176(9-10), 889 (2005)
Bellino MG, Lamas DG, de Reca NEW, Adv. Funct. Mater., 16(1), 107 (2006)
Zhou W, Shao ZP, Jin WQ, J. Alloys Compd., 426, 368 (2006)
Baque L, Caneiro A, Morenof MS, Serquis A, Electron.Commun., 10, 1905 (2008)
Kim JH, Park YM, Kim H, J. Power Sources, 196(7), 3544 (2011)
Zhang H, Chinese J. Catal., 29(1), 7 (2008)
Zhao F, Virkar AV, J. Power Sources, 141(1), 79 (2005)
Leonide A, Sonn V, Weber A, Ivers-Tiffee E, ECS Transaction., 7(1), 521 (2007)
Leonide A, Sonn V, Weber A, Ivers-Tiffee E, J. Electrochem. Soc., 155(1), B36 (2008)
Park YM, Kim JH, Kim H, Int. J. Hydrog. Energy., 36, 9169 (2011)
Weber A, International Symposium on Diagnostics Tools Fuel Cell Technologies (2009)
Schichlein H, Muller AC, Voigts M, Krugel A, Ivers-Tiffee E, J. Appl. Electrochem., 32(8), 875 (2002)
Park YM, Kim JH, Kim H, Int. J. Hydrog. Energy., 36, 5617 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로