Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 23, 2013
Accepted August 27, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Experimental and theoretical investigations on the carbon dioxide gas hydrate formation kinetics at the onset of turbidity regarding CO2 capture and sequestration processes
School of Chemical, Petroleum and Gas Engineering, Semnan University, P. O. Box 35195-363, Semnan, Iran
prof.b.zarenezhad@gmail.com
Korean Journal of Chemical Engineering, December 2013, 30(12), 2248-2253(6), 10.1007/s11814-013-0164-y
Download PDF
Abstract
The carbon dioxide gas hydrate formation kinetics at the onset of turbidity is experimentally and theoretically investigated. It is shown that the time-dependent heterogeneous nucleation and growth kinetics are simultaneously governing the hydrate formation process at the onset of turbidity. A new approach is also presented for determination of gas hydrate-liquid interfacial tension. The CO2 hydrate-liquid interfacial tension according to the suggested heterogeneous_x000D_
nucleation mechanism is found to be about 12.7 mJ/m2. The overall average absolute deviation between predicted and measured CO2 molar consumption is about 0.61%, indicating the excellent accuracy of the proposed model for studying the hydrate-based CO2 capture and sequestration processes over wide ranges of pressures and temperatures.
References
Aaron D, Tsouris C, Sep. Sci. Technol., 40(1-3), 321 (2005)
Englezos P, Lee JD, Korean J. Chem. Eng., 22(5), 671 (2005)
Linga P, Kumar R, Englezos P, J. Hazard. Mater., 149(3), 625 (2007)
Klara SM, Srivastava RD, Environ. Prog., 21, 247 (2002)
Kang SP, Lee H, Environ. Sci. Technol., 34, 4397 (2000)
Duc NH, Chauvy F, Herri JM, Energy Conv. Manag., 48(4), 1313 (2007)
Sloan ED, Koh CA, Clathrate hydrates of natural gases, 3rd Ed. New York, CRC Press (2008)
Li G, Liu D, Xie Y, Xiao Y, Energy Fuel., 24, 4590 (2010)
Klauda JB, Sandler SI, Energy Fuels, 19(2), 459 (2005)
Makogon YF, Holditch SA, Makogon TY, J. Petrol. Sci.Eng., 56, 14 (2007)
Tajima H, Yamasaki A, Kiyono F, Energy, 29(11), 1713 (2004)
Linga P, Kumar RN, Englezos P, Chem. Eng. Sci., 62(16), 4268 (2007)
Lee HJ, Lee JD, Linga P, Englezos P, Kim YS, Lee MS, Kim YD, Energy, 35(6), 2729 (2010)
Li XS, Xu CG, Chen ZY, Wu HJ, Energy, 35(9), 3902 (2010)
Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR, Chem. Eng. Sci., 42, 2647 (1987)
ZareNezhad B, Mottahedin M, Varaminian F, The Assessment of Nucleation Kinetic Mechanisms in Gas Hydrate Crystallization Processes, submitted for publication in Korean J. Chem. Eng. (2013)
ZareNezhad B, Mottahedin M, Energy Conv. Manag., 53(1), 332 (2012)
Skovborg P, Rasmussen P, Chem. Eng. Sci., 49(8), 1131 (1994)
Natarajan V, Bishnoi PB, Kalogerakis K, Chem. Eng. Sci., 49, 2957 (1994)
Kashchiev D, Firoozabadi A, J. Cryst. Growth, 241(1-2), 220 (2002)
Kashchiev D, Firoozabadi A, J. Cryst. Growth, 243(3-4), 476 (2002)
Kashchiev D, Firoozabadi A, J. Cryst. Growth, 250(3-4), 499 (2003)
Peng DY, Rabinsom DB, Ind. Eng. Chem. Fund., 15, 59 (1976)
Uchida T, Ebinuma T, Takeya S, Nagao J, Narita H, J. Phys. Chem. B, 106(4), 820 (2002)
Anderson R, Llamedo M, Tohidi B, Burgass RW, J. Phys. Chem. B, 107(15), 3507 (2003)
Englezos P, Lee JD, Korean J. Chem. Eng., 22(5), 671 (2005)
Linga P, Kumar R, Englezos P, J. Hazard. Mater., 149(3), 625 (2007)
Klara SM, Srivastava RD, Environ. Prog., 21, 247 (2002)
Kang SP, Lee H, Environ. Sci. Technol., 34, 4397 (2000)
Duc NH, Chauvy F, Herri JM, Energy Conv. Manag., 48(4), 1313 (2007)
Sloan ED, Koh CA, Clathrate hydrates of natural gases, 3rd Ed. New York, CRC Press (2008)
Li G, Liu D, Xie Y, Xiao Y, Energy Fuel., 24, 4590 (2010)
Klauda JB, Sandler SI, Energy Fuels, 19(2), 459 (2005)
Makogon YF, Holditch SA, Makogon TY, J. Petrol. Sci.Eng., 56, 14 (2007)
Tajima H, Yamasaki A, Kiyono F, Energy, 29(11), 1713 (2004)
Linga P, Kumar RN, Englezos P, Chem. Eng. Sci., 62(16), 4268 (2007)
Lee HJ, Lee JD, Linga P, Englezos P, Kim YS, Lee MS, Kim YD, Energy, 35(6), 2729 (2010)
Li XS, Xu CG, Chen ZY, Wu HJ, Energy, 35(9), 3902 (2010)
Englezos P, Kalogerakis N, Dholabhai PD, Bishnoi PR, Chem. Eng. Sci., 42, 2647 (1987)
ZareNezhad B, Mottahedin M, Varaminian F, The Assessment of Nucleation Kinetic Mechanisms in Gas Hydrate Crystallization Processes, submitted for publication in Korean J. Chem. Eng. (2013)
ZareNezhad B, Mottahedin M, Energy Conv. Manag., 53(1), 332 (2012)
Skovborg P, Rasmussen P, Chem. Eng. Sci., 49(8), 1131 (1994)
Natarajan V, Bishnoi PB, Kalogerakis K, Chem. Eng. Sci., 49, 2957 (1994)
Kashchiev D, Firoozabadi A, J. Cryst. Growth, 241(1-2), 220 (2002)
Kashchiev D, Firoozabadi A, J. Cryst. Growth, 243(3-4), 476 (2002)
Kashchiev D, Firoozabadi A, J. Cryst. Growth, 250(3-4), 499 (2003)
Peng DY, Rabinsom DB, Ind. Eng. Chem. Fund., 15, 59 (1976)
Uchida T, Ebinuma T, Takeya S, Nagao J, Narita H, J. Phys. Chem. B, 106(4), 820 (2002)
Anderson R, Llamedo M, Tohidi B, Burgass RW, J. Phys. Chem. B, 107(15), 3507 (2003)