Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 3, 2013
Accepted October 7, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Extinction effectiveness of pyrogenic condensed-aerosols extinguishing system
Department of Fire Safety Engineering, College of Engineering, Jeonju University, 45, Baengma-gil, Jeonju 560-759, Korea
kokwon@jj.ac.kr, kokwon@empas.com
Korean Journal of Chemical Engineering, December 2013, 30(12), 2254-2258(5), 10.1007/s11814-013-0203-8
Download PDF
Abstract
We studied the extinction effectiveness of pyrogenic condensed-aerosols in gaseous fire extinguishing systems through the ISO (International Organization for Standard) 15779. The thermal characteristics of solid aerosols as an extinguishing agents were evaluated by using TG and DTA. The modified closed pressure vessel test (MCPVT) and the conductivity of the solid aerosol extinguishant were also measured to ensure the safety of extinguishant. The TG and DTA result showed that the resin added to the main component of Potassium Nitrate (PN) has the effectiveness to mitigating the exothermic reaction of the pyrogenic condensed-aerosol extinguishant. The results of maximum height test revealed the extinguishing capability of a pyrogenic condensed-aerosol extinguishing agent as a gaseous extinguishing system.
References
Kwon K, Sobang Yungunonmunzyp, 21, National Fire Service Academy, 271(Dec.) (2011)
Williams BA, Fleming JW, Sheinson RS, Extinction studies of hydrocarbons in methane/air and propane/air counterflow diffusion flames: The role of the CF3 radical, Proceedings of the Halon Options Technical Working Conference, May 31, Albuquerque, NM (1997)
Sheinson RS, Zalosh HGRG, Black BH, Brown DR, Burchell H, Salmon G, Smith WD, Intermediate Scale Fire Extinguishment by Pyrogenic Solid Aerosol Halon Options Technical Working Conference, May 3-5, Albuquerque, NM, USA (1994)
Kim Y, Kwon K, Korean J. Chem. Eng., 29(7), 908 (2012)
Friedman R, J. Fire Protect. Eng., 5, 29 (1993)
Ewing CT, Faith FR, Hughes JT, Carhart HW, Fire Technol., 25, 134 (1989)
Kwon K, Lee D, Iwata Y, Koseki H, J. Loss Prevention., 21(4), 478 (2008)
Sheinson RS, Eaton HG, Black BH, Brown R, Burchell H, Salmon G, Aubin JS, Smith WD, Total flooding fire suppressant testing in a 56m3 (2000 ft3) compartment, Proceedings of the Halon Alternatives Technical Working Conference 1993, May 11-13, 137, Albuquerque, NM (1993)
Carhart HW, Sheinson RS, Tatem PA, Lugar JR, Fire suppression research in the U.S. navy, Proceedings of the First International Conference on Fire Suppression Research, May 5-8, 337, Stockholm and Boras, Sweden (1992)
Pappa AA, Tzamtzis NE, Statheropoulos MK, Parissakis GK, Thermochim. Acta, 261, 165 (1995)
Zhou W, Yang H, Thermochim. Acta, 452(1), 43 (2007)
Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965)
Inoue Y, Japan Association for Fire Sci. Eng., June, 61(3) (2011)
Xiaomeng Z, Guangxuan L, Renming P, J. Fire Sci., 24, 77 (2006)
American Clean Energy and Security Act of 2009, 12 (2009)
Yoo JH, Lee HS, Choi JW, Seo JM, Park C, Ko JW, Korean Chem. Eng. Res., 46(2), 376 (2008)
Sheinson RS, Eaton HG, Zalosh RG, Black BH, Brown R, Burchell H, Salmon G, Smith WD, Fire extinguishment by fine aerosol generation, 1993 CFC & HALON Alternatives Conference, October 20-22, Washington, DC. USA (1993)
Fleming JW, Reed MD, Zegers EJP, Williams BA, Sheinson RS, Extinction studies of propane/air counterflow diffusion flames: The effectiveness of aerosols, Halon Options Technical Working Conference, 403 (May) (1998)
Back G, Boosinger M, Forssell E, Beene D, Weaver E, Nash L, J. Fire Technol., 45(1), 43 (2009)
Baldwin SP, Brown R, Burchell H, Eaton HG, Salmon G, Aubin IS, Sheinson RS, Smith WD, Halon replacements: Cup burner and intermediate size fire evaluation, CFC & HALON Alternatives Conference 1992, September 29-October 1, 812, Washington, DC (1992)
Sheinson RS, Halon replacement agent testing: Procedures, pitfalls, and interpretations, Proceedings of the 1992 Halon Alternatives Technical Working Conference, May 12-14, 207, Albuquerque, NM (1992)
Velders GJM, Ravishankara AR, Miller MK, Molina MJ, Alcamo J, Daniel JS, Fahey DW, Montzka SA, Reimann S, Preserving montreal protocol climate benefits by limiting HFCs,Science, 335(6071), 922 (2012), DOI:10.1126/science.1216414.
Weyant JP, (Ed.) (May 1999), The costs of the Kyoto protocol: A multi-model evaluation, Energy Journal (Special Issue), Retrieved 8 August (2009)
Wehrstedt KD, Knorr A, Schuurman P, J. Loss Prevent. Process Ind., (Nov.), 16, 523 (2003)
Australian/New Zealand Standard: AS/NZS 4487:1997-AS/NZS 1851.16: (condensed only) (1997)
NFPA 2010 Standard for Fixed Aerosol Fire Extinguishing Systems.
ISO International Standard Organization ISO 14520-1a: Aerosol fire-extinguishing systems-Physical properties and system design- Part 1. General requirements.
ISO International Standard Organization ISO 15779: Condensedaerosol fire-extinguishing systems - Physical properties and system design - General requirements.
Song BH, Choi BS, Kim SY, Yi J, HWAHAK KONGHAK, 39(4), 481 (2001)
Williams BA, Fleming JW, Sheinson RS, Extinction studies of hydrocarbons in methane/air and propane/air counterflow diffusion flames: The role of the CF3 radical, Proceedings of the Halon Options Technical Working Conference, May 31, Albuquerque, NM (1997)
Sheinson RS, Zalosh HGRG, Black BH, Brown DR, Burchell H, Salmon G, Smith WD, Intermediate Scale Fire Extinguishment by Pyrogenic Solid Aerosol Halon Options Technical Working Conference, May 3-5, Albuquerque, NM, USA (1994)
Kim Y, Kwon K, Korean J. Chem. Eng., 29(7), 908 (2012)
Friedman R, J. Fire Protect. Eng., 5, 29 (1993)
Ewing CT, Faith FR, Hughes JT, Carhart HW, Fire Technol., 25, 134 (1989)
Kwon K, Lee D, Iwata Y, Koseki H, J. Loss Prevention., 21(4), 478 (2008)
Sheinson RS, Eaton HG, Black BH, Brown R, Burchell H, Salmon G, Aubin JS, Smith WD, Total flooding fire suppressant testing in a 56m3 (2000 ft3) compartment, Proceedings of the Halon Alternatives Technical Working Conference 1993, May 11-13, 137, Albuquerque, NM (1993)
Carhart HW, Sheinson RS, Tatem PA, Lugar JR, Fire suppression research in the U.S. navy, Proceedings of the First International Conference on Fire Suppression Research, May 5-8, 337, Stockholm and Boras, Sweden (1992)
Pappa AA, Tzamtzis NE, Statheropoulos MK, Parissakis GK, Thermochim. Acta, 261, 165 (1995)
Zhou W, Yang H, Thermochim. Acta, 452(1), 43 (2007)
Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965)
Inoue Y, Japan Association for Fire Sci. Eng., June, 61(3) (2011)
Xiaomeng Z, Guangxuan L, Renming P, J. Fire Sci., 24, 77 (2006)
American Clean Energy and Security Act of 2009, 12 (2009)
Yoo JH, Lee HS, Choi JW, Seo JM, Park C, Ko JW, Korean Chem. Eng. Res., 46(2), 376 (2008)
Sheinson RS, Eaton HG, Zalosh RG, Black BH, Brown R, Burchell H, Salmon G, Smith WD, Fire extinguishment by fine aerosol generation, 1993 CFC & HALON Alternatives Conference, October 20-22, Washington, DC. USA (1993)
Fleming JW, Reed MD, Zegers EJP, Williams BA, Sheinson RS, Extinction studies of propane/air counterflow diffusion flames: The effectiveness of aerosols, Halon Options Technical Working Conference, 403 (May) (1998)
Back G, Boosinger M, Forssell E, Beene D, Weaver E, Nash L, J. Fire Technol., 45(1), 43 (2009)
Baldwin SP, Brown R, Burchell H, Eaton HG, Salmon G, Aubin IS, Sheinson RS, Smith WD, Halon replacements: Cup burner and intermediate size fire evaluation, CFC & HALON Alternatives Conference 1992, September 29-October 1, 812, Washington, DC (1992)
Sheinson RS, Halon replacement agent testing: Procedures, pitfalls, and interpretations, Proceedings of the 1992 Halon Alternatives Technical Working Conference, May 12-14, 207, Albuquerque, NM (1992)
Velders GJM, Ravishankara AR, Miller MK, Molina MJ, Alcamo J, Daniel JS, Fahey DW, Montzka SA, Reimann S, Preserving montreal protocol climate benefits by limiting HFCs,Science, 335(6071), 922 (2012), DOI:10.1126/science.1216414.
Weyant JP, (Ed.) (May 1999), The costs of the Kyoto protocol: A multi-model evaluation, Energy Journal (Special Issue), Retrieved 8 August (2009)
Wehrstedt KD, Knorr A, Schuurman P, J. Loss Prevent. Process Ind., (Nov.), 16, 523 (2003)
Australian/New Zealand Standard: AS/NZS 4487:1997-AS/NZS 1851.16: (condensed only) (1997)
NFPA 2010 Standard for Fixed Aerosol Fire Extinguishing Systems.
ISO International Standard Organization ISO 14520-1a: Aerosol fire-extinguishing systems-Physical properties and system design- Part 1. General requirements.
ISO International Standard Organization ISO 15779: Condensedaerosol fire-extinguishing systems - Physical properties and system design - General requirements.
Song BH, Choi BS, Kim SY, Yi J, HWAHAK KONGHAK, 39(4), 481 (2001)