Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 31, 2012
Accepted September 19, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Experimental study on interaction and excess heat release under oxy-fuel combustion of blended coals
Graduate Program, School of Mechanical Engineering, Pusan National University, 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Korea 1Pusan Clean Coal Center, Pusan National University, 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Korea
choigm@pusan.ac.kr
Korean Journal of Chemical Engineering, February 2013, 30(2), 337-344(8), 10.1007/s11814-012-0160-7
Download PDF
Abstract
The combustion behavior and excess heat release during the oxy-fuel combustion of blended coals were investigated experimentally using a non-isothermal thermogravimetric analyzer. The atmospheres were set to 10%O2/90%CO2, 21%O2/79%N2, 30%O2/70%CO2, and 50%O2/50%CO2, and Arthur coal (bituminous coal, BA) and KPU (sub-bituminous coal, SK) were selected as fuel with blending ratios of BA25%/SK75%, BA50%/SK50%, and BA75%/SK25%. The purpose of this study is to investigate the interaction between the blended coals and the effects of blending ratio and oxygen concentration on the excess heat release under oxy-fuel combustion. The results showed that as the oxygen concentration and proportion of sub-bituminous coal increased, the peak value in the differential thermal analysis curve increased by the enhanced reaction rate. A higher oxygen concentration led to excess heat release. The ignition temperatures depended on the volatile matter content of the sub-bituminous coal, whereas the burnout temperature was largely affected by the fixed carbon content of the bituminous coal. For interaction behaviors on characteristic temperatures, the volatile release temperature shows an additive behavior; however, ignition and burnout temperatures show non-additive behaviors for blended coals.
References
Zhang X, Liu Y, Wang C, J. Thermal. Anal. Calorim., 107, 935 (2011)
Chen L, Yong SZ, Ghoniem AF, Prog. Energy Combust. Sci., 38, 156 (2012)
Lee JM, Kim DW, Kim JS, Korean J. Chem. Eng., 26(2), 506 (2009)
Su S, Pohl JH, Holcombe D, Hart JA, Prog. Energy Combust. Sci., 27, 75 (2001)
Nugroho YS, McIntosh AC, Gibbs BM, Fuel., 79, 1951 (2000)
Chi TY, Zhang HJ, Yan Y, Zhou HL, Zheng H, Fuel, 89(3), 743 (2010)
Arenillas A, Backreedy RI, Jones JM, Pis JJ, Pourkashanian A, Rubiera F, Williams A, Fuel, 81(5), 627 (2002)
Artos V, Scaroni AW, Fuel., 72, 927 (1993)
Arenillas A, Rubiera F, Arias B, Pis JJ, Faundez JM, Gordon AL, Garcia XA, J. Thermal. Anal. Calorim., 76, 603 (2004)
Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF, Prog. Energy Combust. Sci., 31, 283 (2005)
Toftegaard MB, Brix J, Jensen PA, Glarborg P, Jensen AD, Prog. Energy Combust. Sci., 36, 581 (2010)
Fan YS, Zou Z, Cao ZD, Xu YC, Hangt XK, Energy Fuels, 22(2), 892 (2008)
Liu H, Energy Fuels, 23, 4278 (2009)
Li Q, Zhao C, Chen X, Wu W, Li Y, J. Anal. Appl. Pyrol., 85, 521 (2009)
Rathnam RK, Elliott LK, Wall TF, Liu YH, Moghtaderi B, Fuel Process. Technol., 90(6), 797 (2009)
Zhang L, Binner E, Qiao Y, Li C, Energy Fuels., 24, 29 (2010)
Choi W, Jo HD, Choi WK, Park YS, Keel SI, Lee HK, Korean Chem. Eng. Res., 49(6), 857 (2011)
Yuzbasi NS, Selcuk N, Fuel Process. Technol., 92(5), 1101 (2011)
Lester E, Gong M, Thompson A, J. Anal. Appl. Pyrol., 80, 111 (2007)
Arias B, Pevida C, Rubiera F, Pis JJ, Fuel, 87(12), 2753 (2008)
Haykiri-Acma H, Turan AZ, Yaman S, Kucukbayrak S, Fuel Process. Technol., 91(11), 1569 (2010)
Timothy LD, Sarofim AF, Beer JM, Proc. Combust. Inst., 19, 1123 (1982)
Timothy LD, Froelich D, Sarofim AF, Beer JM, Proc. Combust.Inst., 21, 1141 (1986)
Saito M, Sadakata M, Sato M, Soutome T, Murata H, Combust.Flame., 87, 1 (1991)
Murphy JJ, Shaddix CR, Combust. Flame., 87, 710 (2006)
Chen Y, Mori S, Pan WP, Thermochim. Acta, 275(1), 149 (1996)
Ulloa CA, Gordon AL, Garcia XA, Fuel Process. Technol., 90(4), 583 (2009)
Varol M, Atimtay AT, Bay B, Olgun H, Thermochim. Acta, 510(1-2), 195 (2010)
Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ, Bioresour. Technol., 101(12), 4584 (2010)
Muthuraman M, Namioka T, Yoshikawa K, Fuel Process. Technol., 91(5), 550 (2010)
Selcuk N, Yuzbasi NS, J. Anal. Appl. Pyrol., 90, 133 (2011)
Gil MV, Riaza J, Alvarez L, Pevida C, Pis JJ, Rubiera F, J.Thermal. Anal. Calorim., 109, 49 (2011)
Muthuraman M, Namioka T, Yoshikawa K, Appl. Energy, 87(1), 141 (2010)
Li XG, Ma BG, Li X, Hu ZW, Wang XG, Thermochim. Acta, 441(1), 79 (2006)
Wang CP, Wang FY, Yang QR, Liang RG, Biomass Bioenerg., 33(1), 50 (2009)
http://www.uzaktanegitimplatformu.com/UEP/uep_ylisans/ey2/ey2_download/Practice%20Guide_Section%202_TGA.pdf.
Cho CP, Jo S, Kim HY, Yoon SS, Numer. Heat Transfer, Part A., 52, 1101 (2007)
Bejarano PA, Levendis YA, Combust. Sci. Technol., 179(8), 1569 (2007)
Chen L, Yong SZ, Ghoniem AF, Prog. Energy Combust. Sci., 38, 156 (2012)
Lee JM, Kim DW, Kim JS, Korean J. Chem. Eng., 26(2), 506 (2009)
Su S, Pohl JH, Holcombe D, Hart JA, Prog. Energy Combust. Sci., 27, 75 (2001)
Nugroho YS, McIntosh AC, Gibbs BM, Fuel., 79, 1951 (2000)
Chi TY, Zhang HJ, Yan Y, Zhou HL, Zheng H, Fuel, 89(3), 743 (2010)
Arenillas A, Backreedy RI, Jones JM, Pis JJ, Pourkashanian A, Rubiera F, Williams A, Fuel, 81(5), 627 (2002)
Artos V, Scaroni AW, Fuel., 72, 927 (1993)
Arenillas A, Rubiera F, Arias B, Pis JJ, Faundez JM, Gordon AL, Garcia XA, J. Thermal. Anal. Calorim., 76, 603 (2004)
Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF, Prog. Energy Combust. Sci., 31, 283 (2005)
Toftegaard MB, Brix J, Jensen PA, Glarborg P, Jensen AD, Prog. Energy Combust. Sci., 36, 581 (2010)
Fan YS, Zou Z, Cao ZD, Xu YC, Hangt XK, Energy Fuels, 22(2), 892 (2008)
Liu H, Energy Fuels, 23, 4278 (2009)
Li Q, Zhao C, Chen X, Wu W, Li Y, J. Anal. Appl. Pyrol., 85, 521 (2009)
Rathnam RK, Elliott LK, Wall TF, Liu YH, Moghtaderi B, Fuel Process. Technol., 90(6), 797 (2009)
Zhang L, Binner E, Qiao Y, Li C, Energy Fuels., 24, 29 (2010)
Choi W, Jo HD, Choi WK, Park YS, Keel SI, Lee HK, Korean Chem. Eng. Res., 49(6), 857 (2011)
Yuzbasi NS, Selcuk N, Fuel Process. Technol., 92(5), 1101 (2011)
Lester E, Gong M, Thompson A, J. Anal. Appl. Pyrol., 80, 111 (2007)
Arias B, Pevida C, Rubiera F, Pis JJ, Fuel, 87(12), 2753 (2008)
Haykiri-Acma H, Turan AZ, Yaman S, Kucukbayrak S, Fuel Process. Technol., 91(11), 1569 (2010)
Timothy LD, Sarofim AF, Beer JM, Proc. Combust. Inst., 19, 1123 (1982)
Timothy LD, Froelich D, Sarofim AF, Beer JM, Proc. Combust.Inst., 21, 1141 (1986)
Saito M, Sadakata M, Sato M, Soutome T, Murata H, Combust.Flame., 87, 1 (1991)
Murphy JJ, Shaddix CR, Combust. Flame., 87, 710 (2006)
Chen Y, Mori S, Pan WP, Thermochim. Acta, 275(1), 149 (1996)
Ulloa CA, Gordon AL, Garcia XA, Fuel Process. Technol., 90(4), 583 (2009)
Varol M, Atimtay AT, Bay B, Olgun H, Thermochim. Acta, 510(1-2), 195 (2010)
Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ, Bioresour. Technol., 101(12), 4584 (2010)
Muthuraman M, Namioka T, Yoshikawa K, Fuel Process. Technol., 91(5), 550 (2010)
Selcuk N, Yuzbasi NS, J. Anal. Appl. Pyrol., 90, 133 (2011)
Gil MV, Riaza J, Alvarez L, Pevida C, Pis JJ, Rubiera F, J.Thermal. Anal. Calorim., 109, 49 (2011)
Muthuraman M, Namioka T, Yoshikawa K, Appl. Energy, 87(1), 141 (2010)
Li XG, Ma BG, Li X, Hu ZW, Wang XG, Thermochim. Acta, 441(1), 79 (2006)
Wang CP, Wang FY, Yang QR, Liang RG, Biomass Bioenerg., 33(1), 50 (2009)
http://www.uzaktanegitimplatformu.com/UEP/uep_ylisans/ey2/ey2_download/Practice%20Guide_Section%202_TGA.pdf.
Cho CP, Jo S, Kim HY, Yoon SS, Numer. Heat Transfer, Part A., 52, 1101 (2007)
Bejarano PA, Levendis YA, Combust. Sci. Technol., 179(8), 1569 (2007)