ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 2, 2012
Accepted August 5, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Batch and continuous (fixed-bed column) biosorption of Cu(II) by Tamarindus indica fruit shell

Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
Korean Journal of Chemical Engineering, February 2013, 30(2), 369-378(10), 10.1007/s11814-012-0127-8
downloadDownload PDF

Abstract

The feasibility of employing Tamarindus indica (tamarind) fruit shell (TFS) as low-cost biosorbent for removal of Cu(II) from aqueous solutions was investigated. Batch experiments were carried out as function of initial solution pH (2-7), contact time (10-240 min), initial Cu(II) concentration (20-100 mg L^(-1)), biosorbent dose (0.5-5 g) and temperature (293-313 K). Biosorption equilibrium data were well described by the Langmuir isotherm model with maximum biosorption capacity of 80.01 mg g^(-1) at 313 K. Biosorption of Cu(II) followed pseudo-second-order kinetics. Gibbs free energy (ΔG°) was spontaneous for all interactions, and the biosorption process exhibited endothermic enthalpy values. To ascertain the practical applicability of the biosorbent, fixed-bed column studies were also performed. The breakthrough time increased with increasing bed height and decreased with increasing flow rate. The Thomas model as well as the Bed Depth Service Time (BDST) model was fitted to the dynamic flow experimental data to determine the column kinetic parameters useful for designing large-scale column studies. The Thomas model showed good agreement with the experimental results at all the process parameters studied. It could be concluded that TFS may be used as an inexpensive and effective biosorbent without any treatment or any other modification for the removal of Cu(II) ions from aqueous solutions.

References

Sud D, Mahajan G, Kaur MP, Bioresour. Technol., 99(14), 6017 (2008)
Farooq U, Kozinski JA, Khan MA, Athar M, Bioresour. Technol., 101(14), 5043 (2010)
Zhu CS, Wang LP, Chen WB, J. Hazard. Mater., 168(2-3), 739 (2009)
Anirudhan TS, Radhakrishnan PG, J. Chem. Thermodyn., 40(4), 702 (2008)
Ozer A, Ozer D, Ozer A, Process Biochem., 39, 2183 (2004)
Ajmal M, Khan AH, Ahmad S, Ahmad A, Water Res., 32, 3085 (1998)
Yao ZY, Qi JH, Wang LH, J. Hazard. Mater., 174(1-3), 137 (2010)
Jaman H, Chakraborty D, Saha P, Clean Soil Air Water., 37, 704 (2009)
Chowdhury S, Saha PD, Colloids Surf. B., 88, 697 (2011)
Demirbas A, J. Hazard. Mater., 157(2-3), 220 (2008)
Saha P, Water Air Soil Pollut., 213, 287 (2010)
Saha P, Chowdhury S, Gupta S, Kumar I, Kumar R, Clean Soil Air Water., 38, 437 (2010)
Singh D, Wangchu L, Moond SK, Nat. Prod. Rad., 6, 315 (2007)
Chowdhury S, Mishra R, Kushwaha P, Das P, Biorem. J., 15, 77 (2011)
Chowdhury S, Saha P, Chem. Eng. J., 164(1), 168 (2010)
Chowdhury S, Chakraborty S, Saha P, Colloids Surf. B., 84, 520 (2011)
Chakraborty S, Chowdhury S, Saha PD, Carbohydr. Polym., 86, 1533 (2011)
Saha P, Chowdhury S, Gupta S, Kumar I, Chem. Eng. J., 165(3), 874 (2010)
Chowdhury S, Mishra R, Saha P, Kushwaha P, Desalination, 265(1-3), 159 (2011)
Hasan SH, Ranjan D, Talat M, J. Hazard. Mater., 181(1-3), 1134 (2010)
Uddin MT, Rukanuzzaman M, Khan MMR, Islam MA, J. Environ. Manage., 90, 3443 (2009)
Han RP, Ding DD, Xu YF, Zou WH, Wang YF, Li YF, Zou L, Bioresour. Technol., 99(8), 2938 (2008)
Ozsoy HD, Kumbur H, J. Hazard. Mater., 136(3), 911 (2006)
Chowdhury S, Das P, Sep. Sci. Technol., 46(12), 1966 (2011)
Chen H, Dai GL, Zhao J, Zhong AG, Wu JY, Yan H, J. Hazard. Mater., 177(1-3), 228 (2010)
Kilic M, Yazici H, Solak M, Bioresour. Technol., 100(7), 2130 (2009)
Vaghetti JCP, Lima EC, Royer B, da Cunha BM, Cardoso NF, Brasil JL, Dias SLP, J. Hazard. Mater., 162(1), 270 (2009)
Amarasinghe BMWPK, Williams RA, Chem. Eng. J., 132(1-3), 299 (2007)
Aydin H, Bulut Y, Yerlikaya C, J. Environ. Manage., 87, 37 (2008)
Shukla SR, Pai RS, Sep. Purif. Technol., 43(1), 1 (2005)
Demirbas E, Dizge N, Sulak MT, Kobya M, Chem. Eng. J., 148(2-3), 480 (2009)
Iftikhar AR, Bhatti HN, Hanif MA, Nadeem R, J. Hazard. Mater., 161(2-3), 941 (2009)
Dahiya S, Tripathi RM, Hegde AG, J. Hazard. Mater., 150, 376 (2008)
Gupta VK, Ind. Eng. Chem. Res., 37(1), 192 (1998)
Hong S, Wen C, He J, Gan FX, Ho YS, J. Hazard. Mater., 167(1-3), 630 (2009)
Ofomaja AE, J. Environ. Manage., 91, 1491 (2010)
Ahmad AA, Hameed BH, J. Hazard. Mater., 175(1-3), 298 (2010)
Vinodhini V, Das N, Desalination, 264(1-2), 9 (2010)
Oguz E, Ersoy M, Chem. Eng. J., 164(1), 56 (2010)
Saha PD, Chowdhury S, Mondal M, Sinha K, Sep. Sci. Technol., 47, 112 (2011)
Al-Ghouti MA, Khraisheh MAM, Ahmad MN, Allen SJ, J. Hazard. Mater., 146(1-2), 316 (2007)
Quek SY, Al-Duri B, Chem. Eng. Process., 46(5), 477 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로