ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 15, 2012
Accepted August 27, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Isolation and characterization of autoflocculating mutants of cyanobacterium Arthrospira platensis

1Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University, Busan 617-736, Korea 2Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University, Busan 617-736, Korea 3Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do 463-746, Korea
jhalee@silla.ac.kr
Korean Journal of Chemical Engineering, February 2013, 30(2), 413-416(4), 10.1007/s11814-012-0146-5
downloadDownload PDF

Abstract

Harvesting microalgae is a major concern for mass culture in industry. Flocculation is an easy and effective way to harvest microalgae. However, flocculation using chemical flocculants is not feasible for scaling-up due to their toxicity. As an alternative technique, mutation breeding of autoflocculating microalgae strain has been reported in this study. We characterized autoflocculating mutants of Arthrospira platensis (A. platensis) by ethyl methane sulfonate_x000D_ (EMS). The cells of mutants were aggregated during the culture and dry cell weight increased 1.2- to 1.8-fold compared to the wild type. Autoflocculation was induced highly at an optimal pH level of 9 and the flocculation efficiency reached almost 90%. Mutants showed higher flocculation efficiency irrespective of the addition of chemical flocculants. Thus, it is definitely useful to harvest microalgae using autoflocculating mutants in large-scale culture without any drawbacks_x000D_ of harvested algal biomass.

References

Chen F, Zhang YM, Enzyme Microb. Technol., 20(3), 221 (1997)
Shimamatsu H, Hydrobilogia., 521, 39 (2004)
Harith ZT, Yusoff FM, Mohamed MS, Shariff M, Din M, Ariff AB, African J. Biotechnol., 8, 5971 (2009)
Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A, J. Renew. Sustain. Energy., 2, 012701 (2010)
Wijffels RH, Barbosa MJ, Science, 329(5993), 796 (2010)
Bilanovic D, Shelef G, Sukenik A, Biomass., 17, 65 (1988)
Sandbank E, Hepher B, Ergeb. Limnol., 11, 108 (1978)
Sukenik A, Bilanovic D, Shelef G, Biomass., 15, 187 (1988)
Kwon GS, Moon SH, Hong SD, Lee HM, Kim HS, Oh HM, Yoon BD, Biotechnol. Lett., 18(12), 1459 (1996)
Lee SJ, Lee YJ, Nam SH, Korean J. Chem. Eng., 25(3), 505 (2008)
Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B, Bioenerg. Res., 1, 20 (2008)
Lee SJ, Kim SB, Kim JE, Kwon GS, Yoon BD, Oh HM, Lett. Appl. Microbiol., 27, 14 (1998)
Salim S, Bosma R, Vermue MH, Wijffels RH, J. Appl. Phycol., 23, 849 (2011)
Cao Y, Yao J, Li J, Chen X, Wu J, Elecronic J. Biotechnol., 13, 1 (2010)
Queener SW, Lively DH, In: Demain AL, Solomon NA, Ed., American Soc. Microbiol., Washington, DC, 155 (1986)
Knuckey RM, Brown MR, Robert R, Frampton DMF, Aquacult. Eng., 35, 300 (2006)
Torzillo G, Scoma A, Faraloni C, Ena A, Johanningmeier U, Int. J. Hydrog. Energy., 34, 4529 (2009)
Polle JEW, Kanakagiri S, Jin E, Masuda T, Melis A, Int. J.Hydrog. Energy., 27, 1257 (2002)
Divakaran R, Pillai VNS, J. Appl. Phycol., 14, 419 (2002)
Ogbonda KH, Aminigo RE, Abu GO, Bioresour. Technol., 98(11), 2207 (2007)
Pandy JP, Pathak N, Tiwari A, J. Algal Biomass Utln., 1, 93 (2010)
Oliver RL, Ganf GG, Ed. Whitton BA, Potts, Dordrecht M, The Nethelands, Kluwer Academic Publishers, 149 (2000)
Yoo C, Kim CJ, Choi GG, Ahn CY, Choi JS, Oh HM, Kor. J. Microbiol., 45, 268 (2009)
Grima EM, Belarbi EH, Fernandez A, Medina AR, Christi Y, Biotechnol. Adv., 20, 291 (2003)
Wu JY, Ye HF, Process Biochem., 42, 114 (2007)
Kim SJ, Choi A, Ahn CY, Park CS, Park YH, Oh HM, Lett. Appl. Microbiol., 40, 190 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로