Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 22, 2012
Accepted August 14, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Substitution effect of silica by silane-modified titania on the tensile and dynamic properties of silica-filled SBR compounds
School of Applied Chemical Engineering and the Research Institute for Catalysis, Chonnam National University, Gwangju 500-757, Korea
gseo@chonnam.ac.kr
Korean Journal of Chemical Engineering, February 2013, 30(2), 494-500(7), 10.1007/s11814-012-0138-5
Download PDF
Abstract
Titania prepared by the calcination of sludge from waste water coagulated by titanium chloride was used as a substituent of the reinforcing material for silica-filled SBR compounds. The titania, mainly composed of anatase, was loosely aggregated and treated with various alkoxy silanes. The partial substitution of silica by the titania and silanemodified titania usually accelerated the cure rate and enhanced the thermal stability of the silica-filled SBR compounds. The extremely low concentration of hydroxyl groups of titania lowered the silica-silica interaction by introducing titania into the moieties of silica particles, resulting in decreases of the Payne effect and fractional hysteresis. Although the titanias modified with silanes were generally effective in enhancing the tensile and dynamic properties of the silicafilled SBR compounds, the silanes which contained mercapto groups, enabling them to react with rubber molecules, exhibited a high wet traction and low rolling resistance without sacrificing their tensile properties.
References
Fontaras G, Samaras Z, Energy Policy, 38(4), 1826 (2010)
Bijarimi M, Zulkafli H, Beg MDH, J. Appl. Sci., 10, 1345 (2010)
Ko YC, Park G, Korean J. Chem. Eng., 24(6), 975 (2007)
Wanger MP, Rubber Chem. Technol., 49, 703 (1976)
Byers JT, Rubber Chem. Technol., 75, 527 (2002)
Murakami K, Iio S, Ikeda Y, Ito H, Tosaka M, Kohjiya S, J. Mater. Sci., 38(7), 1447 (2003)
ten Brinke JW, Debnath SC, Reuvekamp LAEM, Noordermeer JWM, Compos. Sci. Technol., 62, 1165 (2003)
Choi SS, Kim IS, Woo CS, J. Appl. Polym. Sci., 106(4), 2753 (2007)
Silva VP, Paschoalino MP, Goncalves MC, Felisberti MI, Jardim WF, Yoshida IVP, Mater. Chem. Phys., 113(1), 395 (2009)
l-Turaif HAA, Prog. Org. Coat., 69, 241 (2010)
Jayasree TK, Predeep P, J. Elastom. Plast., 40, 127 (2008)
Cho CT, Kang YG, Lee IM, Song SH, KR Patent No. 10-2010-0093688.
Song SH, Kim SW, Jung HG, Kang YG, Annual Conf.Rubber Soc. Korea, Cheonan (Nov. 5. 2010).
Na SH, Shon HK, Kim JB, Park HJ, Kim JH, J. Ind. Eng. Chem., 17(2), 277 (2011)
Kim JH, Cho DL, Kim GJ, Gao B, Shon HK, Catal.Surv. Asia., 15, 117 (2011)
Grosch KA, Rubber Chem. Technol., 69, 495 (1996)
Cataldo F, Angew. Makromol. Chemie., 270, 81 (1999)
Rajan VV, Dierkes WK, Joseph R, Noordermeer JWM, J. Appl. Polym. Sci., 102(5), 4194 (2006)
Ramier J, Gauthier C, Chazeau L, Stelandre L, Guy L, J. Polym. Sci. B: Polym. Phys., 45(3), 286 (2007)
Drozdov AD, Dorfmann A, Polym. Eng. Sci., 42(3), 591 (2002)
Seo G, Park SM, Ha K, Choi KT, Hong CK, Kaang S, J. Mater. Sci., 45(7), 1897 (2010)
Diani J, Fayolle B, Gilormini P, Eur. Polym. J., 45, 601 (2009)
McDonald RS, J. Phys. Chem., 62, 1168 (1958)
Nakazono T, Matsumoto A, J. Appl. Polym. Sci., 118(4), 2314 (2010)
Phillips J, Dumesic JA, ASC Symp. Ser., 248 (1983)
Vondracek P, Hradec M, Chvalovsky V, Khanh HD, Rubber Chem. Technol., 57, 675 (1984)
Nakamura Y, Honda H, Harada A, Fujii S, Nagata K, J. Appl. Polym. Sci., 113(3), 1507 (2009)
Scurati A, Hergenrother WL, Lin CJ, J. Appl. Polym. Sci., 108(3), 1722 (2008)
Bijarimi M, Zulkafli H, Beg MDH, J. Appl. Sci., 10, 1345 (2010)
Ko YC, Park G, Korean J. Chem. Eng., 24(6), 975 (2007)
Wanger MP, Rubber Chem. Technol., 49, 703 (1976)
Byers JT, Rubber Chem. Technol., 75, 527 (2002)
Murakami K, Iio S, Ikeda Y, Ito H, Tosaka M, Kohjiya S, J. Mater. Sci., 38(7), 1447 (2003)
ten Brinke JW, Debnath SC, Reuvekamp LAEM, Noordermeer JWM, Compos. Sci. Technol., 62, 1165 (2003)
Choi SS, Kim IS, Woo CS, J. Appl. Polym. Sci., 106(4), 2753 (2007)
Silva VP, Paschoalino MP, Goncalves MC, Felisberti MI, Jardim WF, Yoshida IVP, Mater. Chem. Phys., 113(1), 395 (2009)
l-Turaif HAA, Prog. Org. Coat., 69, 241 (2010)
Jayasree TK, Predeep P, J. Elastom. Plast., 40, 127 (2008)
Cho CT, Kang YG, Lee IM, Song SH, KR Patent No. 10-2010-0093688.
Song SH, Kim SW, Jung HG, Kang YG, Annual Conf.Rubber Soc. Korea, Cheonan (Nov. 5. 2010).
Na SH, Shon HK, Kim JB, Park HJ, Kim JH, J. Ind. Eng. Chem., 17(2), 277 (2011)
Kim JH, Cho DL, Kim GJ, Gao B, Shon HK, Catal.Surv. Asia., 15, 117 (2011)
Grosch KA, Rubber Chem. Technol., 69, 495 (1996)
Cataldo F, Angew. Makromol. Chemie., 270, 81 (1999)
Rajan VV, Dierkes WK, Joseph R, Noordermeer JWM, J. Appl. Polym. Sci., 102(5), 4194 (2006)
Ramier J, Gauthier C, Chazeau L, Stelandre L, Guy L, J. Polym. Sci. B: Polym. Phys., 45(3), 286 (2007)
Drozdov AD, Dorfmann A, Polym. Eng. Sci., 42(3), 591 (2002)
Seo G, Park SM, Ha K, Choi KT, Hong CK, Kaang S, J. Mater. Sci., 45(7), 1897 (2010)
Diani J, Fayolle B, Gilormini P, Eur. Polym. J., 45, 601 (2009)
McDonald RS, J. Phys. Chem., 62, 1168 (1958)
Nakazono T, Matsumoto A, J. Appl. Polym. Sci., 118(4), 2314 (2010)
Phillips J, Dumesic JA, ASC Symp. Ser., 248 (1983)
Vondracek P, Hradec M, Chvalovsky V, Khanh HD, Rubber Chem. Technol., 57, 675 (1984)
Nakamura Y, Honda H, Harada A, Fujii S, Nagata K, J. Appl. Polym. Sci., 113(3), 1507 (2009)
Scurati A, Hergenrother WL, Lin CJ, J. Appl. Polym. Sci., 108(3), 1722 (2008)