Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 27, 2012
Accepted October 2, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
A model for estimating agglomerate sizes of non-magnetic nanoparticles in magnetic fluidized beds
1Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha 410083, Hunan, China 2Department of Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China 3Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu 804-8550, Japan
zhoutao@csu.edu.cn
Korean Journal of Chemical Engineering, February 2013, 30(2), 501-507(7), 10.1007/s11814-012-0170-5
Download PDF
Abstract
The behavior of SiO2, TiO2 and ZnO non-magnetic nanoparticles and the effects of processing parameters on agglomerate sizes were investigated systematically in a magnetic fluidized bed (MFB) by adding coarse magnets. A mathematical model is developed based on energy balance among the agglomerate collision energy, magnetic energy, energy generated by turbulent shear and cohesive energy to predict the agglomerate sizes. The results showed that slugging of the bed disappeared and the measured agglomerate sizes decreased, so that the fluidization quality of non-magnetic nanoparticles was significantly improved by adding coarse magnets due to introduction of magnetic field. The average agglomerate sizes predicted by this model are in agreement with the experimental data.
Keywords
References
Quevedo JA, Flesch J, Pfeffer R, Dave R, Chem. Eng. Sci., 62(9), 2608 (2007)
Zeng P, Zhou T, Yang JS, Chem. Eng. Process., 47(1), 101 (2008)
Yu Q, Dave RN, Zhu C, Quevedo JA, Pfeffer R, AIChE J., 51(7), 1971 (2005)
Zhu QS, Li HZ, Powder Technol., 86(2), 179 (1996)
Lu XS, Li HZ, Powder Technol., 107(1-2), 66 (2000)
Pacek AW, Nienow AW, Powder Technol., 60, 145 (1990)
Zhou T, Li HZ, Powder Technol., 101(1), 57 (1999)
Wang XS, Palero V, Soria J, Rhodes MJ, Chem. Eng. Sci., 61(16), 5476 (2006)
Morooka S, Kusakabe K, Kobata A, Kato Y, J. Chem. Eng. Japan., 21, 41 (1988)
Horio M, Iwadate Y, Proc. of the 5th World Congress of Chem. Eng., 2nd Int. Particle Technol. Forum, 571 (1996)
Iwadate Y, Horio M, Powder Technol., 100(2-3), 223 (1998)
Zhou T, Li HZ, Shinohara K, Adv. Powder Technol., 17(2), 159 (2006)
Xu CB, Zhu J, Chem. Eng. Sci., 60(23), 6529 (2005)
Matsuda S, Hatano H, Muramoto T, Tsutsumi A, AIChE J., 50(11), 2763 (2004)
Guo QJ, Yang XP, Shen WZ, Liu H, Chem. Eng. Process., 46(4), 307 (2007)
Wang H, Zhou T, Yang JS, Wang JJ, Kage H, Mawatari Y, Chem. Eng. Technol., 33(3), 388 (2010)
Wang YH, Gui KT, Shi MH, Li CF, J. Jiangsu Univ. (Natural Science Edition)., 29, 419 (2008)
Li X, Sun D, Chen JH, Wang S, Bai YH, Lu HL, Chem.Eng. Chinese Univ., 24, 52 (2010)
Mori S, Wen CY, AIChE J., 21, 109 (1975)
Molerus O, Powder Technol., 33, 81 (1982)
Rumpf H, Chem. - Ink. -Tech., 42, 538 (1970)
Israelachvili JN, Academicx Press, Orlando, FL, London, 88 (1985)
Derjaguin BV, Kolloid Zeits., 69, 155 (1934)
Jaraiz E, Kiruma S, Levenspiel O, Powder Technol., 72, 23 (1992)
Krupp H, Adv. Colloid Interface Sci., 1, 111 (1967)
Khan AR, Richardson JF, Chem. Eng. Sci., 45, 255 (1990)
Timoshenko SP, Goodier JN, McGraw-Hill, New York, 68 (1970)
Zeng P, Zhou T, Yang JS, Chem. Eng. Process., 47(1), 101 (2008)
Yu Q, Dave RN, Zhu C, Quevedo JA, Pfeffer R, AIChE J., 51(7), 1971 (2005)
Zhu QS, Li HZ, Powder Technol., 86(2), 179 (1996)
Lu XS, Li HZ, Powder Technol., 107(1-2), 66 (2000)
Pacek AW, Nienow AW, Powder Technol., 60, 145 (1990)
Zhou T, Li HZ, Powder Technol., 101(1), 57 (1999)
Wang XS, Palero V, Soria J, Rhodes MJ, Chem. Eng. Sci., 61(16), 5476 (2006)
Morooka S, Kusakabe K, Kobata A, Kato Y, J. Chem. Eng. Japan., 21, 41 (1988)
Horio M, Iwadate Y, Proc. of the 5th World Congress of Chem. Eng., 2nd Int. Particle Technol. Forum, 571 (1996)
Iwadate Y, Horio M, Powder Technol., 100(2-3), 223 (1998)
Zhou T, Li HZ, Shinohara K, Adv. Powder Technol., 17(2), 159 (2006)
Xu CB, Zhu J, Chem. Eng. Sci., 60(23), 6529 (2005)
Matsuda S, Hatano H, Muramoto T, Tsutsumi A, AIChE J., 50(11), 2763 (2004)
Guo QJ, Yang XP, Shen WZ, Liu H, Chem. Eng. Process., 46(4), 307 (2007)
Wang H, Zhou T, Yang JS, Wang JJ, Kage H, Mawatari Y, Chem. Eng. Technol., 33(3), 388 (2010)
Wang YH, Gui KT, Shi MH, Li CF, J. Jiangsu Univ. (Natural Science Edition)., 29, 419 (2008)
Li X, Sun D, Chen JH, Wang S, Bai YH, Lu HL, Chem.Eng. Chinese Univ., 24, 52 (2010)
Mori S, Wen CY, AIChE J., 21, 109 (1975)
Molerus O, Powder Technol., 33, 81 (1982)
Rumpf H, Chem. - Ink. -Tech., 42, 538 (1970)
Israelachvili JN, Academicx Press, Orlando, FL, London, 88 (1985)
Derjaguin BV, Kolloid Zeits., 69, 155 (1934)
Jaraiz E, Kiruma S, Levenspiel O, Powder Technol., 72, 23 (1992)
Krupp H, Adv. Colloid Interface Sci., 1, 111 (1967)
Khan AR, Richardson JF, Chem. Eng. Sci., 45, 255 (1990)
Timoshenko SP, Goodier JN, McGraw-Hill, New York, 68 (1970)