ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 9, 2012
Accepted December 6, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Photocatalytic degradation of ammonia by light expanded clay aggregate (LECA)-coating of TiO2 nanoparticles

Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran 1Catalyst Research Center Chemical Engineering Department, Razi University, Kermanshah 67149-67246, Iran 2Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
Korean Journal of Chemical Engineering, March 2013, 30(3), 574-579(6), 10.1007/s11814-012-0212-z
downloadDownload PDF

Abstract

Photocatalytic degradation of ammonia on supported TiO2 nanoparticles was investigated. The TiO2 nanoparticles used as photocatalyst were coated on light expanded clay aggregate granules (LECA), which is a porous and light weight support. Photocatalytic reaction activity of prepared catalyst was determined by ammonia degradation from water synthetically polluted with ammonia. Experiment results showed significantly high photocatalytic activity for the immobilized catalysts. The ammonia was removed more than 85% within 300 min of the process with optimum calcinations temperature 550 ℃ and pH 11. Kinetics of the photocatalytic reaction followed a pseudo-first order model. XRF, XRD and SEM analyses revealed a rather uniform coating of TiO2 on the support. By using floated TiO2/LECA as a photocatalyst in aqueous solution of NH3, the ammonia was photodegraded into N2 and H2 gases, while NO2- and NO3- were formed at very low concentrations.

References

Netting J, Nature., 406, 928 (2008)
Yuzawa H, Mori T, Itoh H, Yoshida H, J. Phys. Chem. C., 116, 4126 (2012)
Saha D, Deng SG, J. Chem. Eng. Data, 55(12), 5587 (2010)
ShuHu X, Hui QJ, Xu Z, Juan LH, Jin WD, Water Res., 43, 1432 (2009)
Bonsen EM, Schroeter S, Jacobs H, Broekaert JAC, Chemosphere., 35, 1431 (1997)
Lee DK, Environ. Sci. Technol., 37, 5745 (2003)
Ahmed FN, Lan CQ, Desalination., 287, 41 (2012)
Bonmati A, Flotats X, Waste Manage., 23, 261 (2003)
Ricardo AR, Carvalho G, Velizarov S, Crespo JG, Reis MAM, Water Res., 46, 4556 (2012)
Pressley TA, Bishop DF, Roan SG, Environ. Sci. Technol., 6, 622 (1972)
Wang Y, Qu J, Wu R, Lei P, Water Res., 40, 1224 (2006)
Zhu XD, Castleberry SR, Nanny MA, Butler EC, Environ.Sci. Technol., 39, 3784 (2005)
Fujishima A, Honda K, Nature., 238, 37 (1972)
Kalyanasundaram K, Graetzel M (Eds.), Photosensitization and photocatalysis using inorganic and organometallic compounds, Kluwer Academic Publishers, Dordrecht (1993)
Fujishima A, Hashimoto K, Watanabe T, TiO2 photocatalysis fundamental and applications, BKC Inc., Tokyo (1999)
Kaneko M, Okura I (Eds.),, Photocatalysis Science and Technology, Kodansha/Springer (2002)
Jafarzadeh NK, Sharifnia S, Hosseini SN, Rahimpour F, Korean J. Chem. Eng., 28(2), 531 (2011)
Choi W, Lee J, Kim S, Hwang S, Lee MC, Lee TK, J. Ind. Eng. Chem., 9(1), 96 (2003)
Taguchi J, Okuhara T, Appl. Catal. A: Gen., 194-195, 89 (2000)
Lee J, Park H, Choi W, Environ. Sci. Technol., 36, 5462 (2002)
Zhu XD, Castleberry SR, Nanny MA, Butler EC, Environ.Sci. Technol., 39, 3784 (2005)
Kim S, Choi W, Environ. Sci. Technol., 36, 2019 (2002)
Karches M, Morstein M, von Rohr P, Pozzo RL, Giombi JL, Baltanas MA, Catal. Today, 72(3-4), 267 (2002)
Lee JC, Kim MS, Kim BW, Water Res., 36, 1776 (2002)
Horikoshi S, Watanabe N, Onishi H, Hidaka H, Serpone N, Appl. Catal., B37, 117 (2002)
Martyanov IN, Klabunde KJ, J. Catal., 225(2), 408 (2004)
Shang J, Li W, Zhu YF, J. Mol. Catal. A-Chem., 202(1-2), 187 (2003)
Chen H, Lee SW, Kim TH, Hur BY, J. Eur. Ceram. Soc., 26, 2231 (2006)
Ao CH, Lee SC, Yu JC, J. Photochem. Photobiol. A., 156, 171 (2003)
Vohra MS, Tanaka K, Water Res., 37, 3992 (2003)
Hosseini SN, Borghei SM, Vossoughi M, Taghavinia N, Appl. Catal. B: Environ., 74(1-2), 53 (2007)
Haque N, Morrison G, Cano-Aguilera I, Gardea-Torresdey JL, Microchem. J., 88, 7 (2008)
Dordio A, Carvalho AJP, Teixeira DM, Dias CB, Pinto AP, Bioresour. Technol., 101(3), 886 (2010)
Amiri H, Jaafarzadeh N, Ahmadi M, Martinez SS, Desalination, 272(1-3), 212 (2011)
Pioro LS, Pioro IL, Cement Concrete Compos., 26, 639 (2004)
BETZ Laboratories Inc., BETZ Handbook of Industrial Water Conditioning, 9th Ed., BETZ Laboratories (1991)
Arabatzis IM, Spyrellis N, Loizos Z, Falaras P, J. Mater. Process. Technol., 161, 224 (2005)
Chan AHC, Porter JF, Barford JB, Chan CK, Water Sci.Technol., 44, 187 (2001)
Vione D, Minero C, Maurino V, Carlotti AE, Picatonotto T, Pelizzetti E, Appl. Catal. B: Environ., 58(1-2), 79 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로