ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 10, 2012
Accepted November 19, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Glycerol steam reforming over Ni/γ-Al2O3 catalysts modified by metal oxides

Air Environmental Modeling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institutes, Chengdu University of Information Technology, Chengdu 610225, China
xch@cuit.edu.cn
Korean Journal of Chemical Engineering, March 2013, 30(3), 587-592(6), 10.1007/s11814-012-0204-z
downloadDownload PDF

Abstract

The metal oxides modified Ni/γ-Al2O3 catalysts for glycerol steam reforming were prepared by impregnation. Characterization results of fresh catalysts indicated that the molybdates modification abated the acidity and the stronger metal-support interaction of Ni/γ-Al2O3 catalysts, leading to a stable catalytic activity. Especially, NiMoLa-CaMg/γ-Al2O3 (NiMoLa/CMA) catalyst exhibited no deactivation along with glycerol complete conversion to stable gaseous products containing 69% H2, 20% CO and 10% CO2 during time-on-stream of 42 h. TPO of spent Ni/γ-Al2O3 catalysts modified by different components showed that the carbon deposit on acidic sites and NiAl2O4 species led to catalysts deactivation. A lower reforming temperature and a higher LHSV and glycerol content were helpful to the production of syngas from GSR over NiMoLa/CMA; the reverse conditions would improve the formation of H2.

References

Roy D, Subramaniam B, Chaudhari RV, Catal. Today, 156(1-2), 31 (2010)
Nakagawa Y, Shinmi Y, Koso S, Tomishige K, J. Catal., 272(2), 191 (2010)
Sarkari R, Anjaneyulu C, Krishna V, Kishore R, Catal. Commun., 12, 1067 (2011)
Dunn S, Int. J. Hydrog. Energy., 27, 235 (2002)
Asadullah M, Ito S, Kunimori K, Yamada M, Tomishige K, J. Catal., 208(2), 255 (2002)
Simonetti DA, Kunkes EL, Dumesic JA, J. Catal., 247(2), 298 (2007)
Kunkes EL, Simonetti DA, Dumesic JA, Pyrz WD, Murillo LE, Chen JGG, Buttrey DJ, J. Catal., 260(1), 164 (2008)
Wen GD, Xu YP, Ma HJ, Xu ZS, Tian ZJ, Int. J. Hydrog.Energy., 33, 6657 (2008)
Lehnert K, Claus P, Catal. Commun., 9, 2543 (2008)
Karthikeyan D, Shin GS, Moon DJ, Kim JH, Park NC, Kim YC, J. Nanosci. Nanotechnol., 11, 1443 (2011)
Byrd AJ, Pant KK, Gupta RB, Fuel, 87(13-14), 2956 (2008)
Sinfelt JH, Yates DJC, J. Catal., 8, 82 (1967)
Marino F, Boveri M, Baronetti G, Laborde M, Int. J. Hydrog.Energy., 26, 665 (2001)
Lisboa JD, Santos DCRM, Passos FB, Noronha FB, Catal. Today, 101(1), 15 (2005)
Sanchez-Sanchez MC, Navarro RM, Fierro JLG, Int. J.Hydrog. Energy., 32, 1462 (2007)
Suelves I, Lazaro MJ, Moliner R, Echegoyen Y, Palacios JM, Catal. Today, 116(3), 271 (2006)
Maluf SS, Assaf EM, Fuel, 88(9), 1547 (2009)
Youn MH, Seo JG, Kim P, Song IK, J. Mol. Catal. A-Chem., 261(2), 276 (2007)
Huang T, Huang W, Huang J, Ji P, Fuel Process. Technol., 92(10), 1868 (2011)
Barath F, Turki M, Keller V, Maire G, J. Catal., 185(1), 1 (1999)
Valliyappan T, Ferdous D, Bakhshi NN, Dalai AK, Top Catal., 49, 59 (2008)
Rennard DC, Kruger JC, Schmidt LD, ChemSusChem., 2, 89 (2009)
Park SY, Kim JH, Moon DJ, Park NC, Kim YC, J.Nanosci. Nanotechnol., 10, 3175 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로