Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 4, 2012
Accepted October 9, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Mineral behavior of low-temperature lignite ashes under gasification atmosphere
School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China 1Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
Korean Journal of Chemical Engineering, March 2013, 30(3), 605-612(8), 10.1007/s11814-012-0176-z
Download PDF
Abstract
To investigate the mineral behavior of lignite ashes under gasification conditions, 450 ℃Xiaolongtan lignite ash samples (XLT-LTA) treated at different temperatures or pressures under reducing atmosphere (H2/CO2=1 : 1, volume ratio) have been examined by means of an SC-444 apparatus, a scanning electron microscope with an energy dispersive X-ray detector (SEM-EDX), and by X-ray diffraction (XRD). The results showed the sulfur content in the XLT-LTA_x000D_
to be much higher than that in ashes prepared at 815 ℃, as a result of the release of sulfur dioxide during the oxidization of pyrite. With increasing temperature, the XLT-LTA particles gradually agglomerate and form partially molten surface entities with obvious apertures, and the content of iron and calcium in the congeries or molten parts increases due to the fusion of fine ash particles with the enrichment of iron and the formation of low-temperature eutectics of calcium and iron. An increase of pressure restrains the decomposition of calcite and muscovite, and promotes the formation of iron minerals (e.g., hercynite, cordierite, and sekaninaite) and orthoclase. The content of amorphous material also increases with increasing pressure.
References
Chadwick BL, Ind. Eng. Chem. Res., 38(3), 1159 (1999)
Zhang K, You C, Li Y, Korean J. Chem. Eng., 29(4), 540 (2012)
Benson SA, Harb JN, Energy Fuels., 7, 743 (1993)
Benson SA, Holm PL, Ind. Eng. Chem. Prod. Res. Dev., 24, 149 (1985)
Vassileva CG, Vassilev SV, Fuel Process. Technol., 86(12-13), 1297 (2005)
Liu H, Luo CH, Toyota M, Kato S, Uemiya S, Kojima T, Tominaga H, Fuel, 82(5), 523 (2003)
Grigore M, Sakurovs R, French D, Sahajwalla V, Int. J. Coal Geol., 75(4), 213 (2008)
Bai J, Li W, Li CZ, Bai ZQ, Li BQ, J. Fuel Chem. Technol., 37, 134 (2009)
Irfan MF, Usman MR, Kusakabe K, Energy, 36(1), 12 (2011)
Skodras G, Sakellaropoulos GP, Fuel Process. Technol., 77-78, 151 (2002)
Sun S, Zhang J, Hu X, Qiu P, Qian J, Qin Y, Korean J. Chem.Eng., 28, 554 (2009)
Clemens T, Gong D, Pearce S, Int. J. Coal Geol., 65(3-4), 235 (2006)
Matsuoka K, Yamashita T, Kuramoto K, Suzuki Y, Takaya A, Tomita A, Fuel, 87(6), 885 (2008)
Dahlin RS, Peng WW, Nelson M, Vimalchand P, Liu GH, Energy Fuels, 20(6), 2465 (2006)
Dahlin RS, Dorminey JR, Peng WW, Leonard RF, Vimalchand P, Energy Fuels, 23(1), 785 (2009)
Skrifvars BJ, Hupa M, Hiltunen M, Ind. Eng. Chem. Res., 31, 1026 (1992)
Park HJ, Jung NH, Lee JM, Korean J. Chem. Eng., 28(8), 1791 (2011)
Li FH, Huang JJ, Fang YT, Wang Y, Energy Fuels., 25, 273 (2010)
Li FH, Huang JJ, Fang YT, Wang Y, Fuel, 90(7), 2377 (2011)
Song WJ, Tang LH, Zhu XD, Wu YQ, Rong YQ, Zhu ZB, Koyama S, Fuel, 88(2), 297 (2009)
Su S, Pohi JH, Holcombe D, Hart JA, Fuel., 80, 1351 (2001)
Li HX, Ninomiya Y, Dong ZB, Zhang MX, Chin. J. Chem. Eng., 14(6), 784 (2006)
Bai J, Li W, Li BQ, Fuel, 87(4-5), 583 (2008)
Li CY, Zhao JT, Fang YT, Wang Y, Energy Fuels, 23, 5099 (2009)
Tomeczek J, Palugniok H, Fuel, 81(10), 1251 (2002)
VASSILEV SV, KITANO K, TAKEDA S, TSURUE T, Fuel Process. Technol., 45(1), 27 (1995)
Yang JK, Xiao B, Boccaccini AR, Fuel, 88(7), 1275 (2009)
Van Dyk JC, Benson SA, Laumb ML, Waanders B, Fuel, 88(6), 1057 (2009)
Wu XJ, Zhang ZX, Piao GL, He X, Chen YS, Kobayashi N, Mori S, Itaya Y, Energy Fuels, 23, 2420 (2009)
Atakul H, Hilmioglu B, Ekinci E, Fuel Process. Technol., 86(12-13), 1369 (2005)
Samaras P, Diamadopoulos E, Sakellaropoulos GP, Fuel., 75, 1108 (1996)
Srinivasachar S, Helble JJ, Boni AA, Shah N, Huffman GP, Huggins FE, Prog. Energy Combust. Sci., 16, 293 (1990)
Zhou JH, Zhao XH, Yang WJ, Cao XY, Liu JZ, Cen KF, Proc. CSEE., 27, 31 (2007)
Wiberg E, Wiberg N, Holleman AF, Inorganic chemistry, Berlin Academic Press Publications, Germany (2001)
Matjie RH, Li ZS, Colin RW, French D, Fuel, 87(6), 857 (2008)
Marinov V, Marinov SPL, Lazarov L, Stefanova M, Fuel Process. Technol., 31, 181 (1992)
Kondratiev A, Jak E, Fuel., 80, 1989 (2001)
Ward CR, French D, Fuel, 85(16), 2268 (2006)
Zhang K, You C, Li Y, Korean J. Chem. Eng., 29(4), 540 (2012)
Benson SA, Harb JN, Energy Fuels., 7, 743 (1993)
Benson SA, Holm PL, Ind. Eng. Chem. Prod. Res. Dev., 24, 149 (1985)
Vassileva CG, Vassilev SV, Fuel Process. Technol., 86(12-13), 1297 (2005)
Liu H, Luo CH, Toyota M, Kato S, Uemiya S, Kojima T, Tominaga H, Fuel, 82(5), 523 (2003)
Grigore M, Sakurovs R, French D, Sahajwalla V, Int. J. Coal Geol., 75(4), 213 (2008)
Bai J, Li W, Li CZ, Bai ZQ, Li BQ, J. Fuel Chem. Technol., 37, 134 (2009)
Irfan MF, Usman MR, Kusakabe K, Energy, 36(1), 12 (2011)
Skodras G, Sakellaropoulos GP, Fuel Process. Technol., 77-78, 151 (2002)
Sun S, Zhang J, Hu X, Qiu P, Qian J, Qin Y, Korean J. Chem.Eng., 28, 554 (2009)
Clemens T, Gong D, Pearce S, Int. J. Coal Geol., 65(3-4), 235 (2006)
Matsuoka K, Yamashita T, Kuramoto K, Suzuki Y, Takaya A, Tomita A, Fuel, 87(6), 885 (2008)
Dahlin RS, Peng WW, Nelson M, Vimalchand P, Liu GH, Energy Fuels, 20(6), 2465 (2006)
Dahlin RS, Dorminey JR, Peng WW, Leonard RF, Vimalchand P, Energy Fuels, 23(1), 785 (2009)
Skrifvars BJ, Hupa M, Hiltunen M, Ind. Eng. Chem. Res., 31, 1026 (1992)
Park HJ, Jung NH, Lee JM, Korean J. Chem. Eng., 28(8), 1791 (2011)
Li FH, Huang JJ, Fang YT, Wang Y, Energy Fuels., 25, 273 (2010)
Li FH, Huang JJ, Fang YT, Wang Y, Fuel, 90(7), 2377 (2011)
Song WJ, Tang LH, Zhu XD, Wu YQ, Rong YQ, Zhu ZB, Koyama S, Fuel, 88(2), 297 (2009)
Su S, Pohi JH, Holcombe D, Hart JA, Fuel., 80, 1351 (2001)
Li HX, Ninomiya Y, Dong ZB, Zhang MX, Chin. J. Chem. Eng., 14(6), 784 (2006)
Bai J, Li W, Li BQ, Fuel, 87(4-5), 583 (2008)
Li CY, Zhao JT, Fang YT, Wang Y, Energy Fuels, 23, 5099 (2009)
Tomeczek J, Palugniok H, Fuel, 81(10), 1251 (2002)
VASSILEV SV, KITANO K, TAKEDA S, TSURUE T, Fuel Process. Technol., 45(1), 27 (1995)
Yang JK, Xiao B, Boccaccini AR, Fuel, 88(7), 1275 (2009)
Van Dyk JC, Benson SA, Laumb ML, Waanders B, Fuel, 88(6), 1057 (2009)
Wu XJ, Zhang ZX, Piao GL, He X, Chen YS, Kobayashi N, Mori S, Itaya Y, Energy Fuels, 23, 2420 (2009)
Atakul H, Hilmioglu B, Ekinci E, Fuel Process. Technol., 86(12-13), 1369 (2005)
Samaras P, Diamadopoulos E, Sakellaropoulos GP, Fuel., 75, 1108 (1996)
Srinivasachar S, Helble JJ, Boni AA, Shah N, Huffman GP, Huggins FE, Prog. Energy Combust. Sci., 16, 293 (1990)
Zhou JH, Zhao XH, Yang WJ, Cao XY, Liu JZ, Cen KF, Proc. CSEE., 27, 31 (2007)
Wiberg E, Wiberg N, Holleman AF, Inorganic chemistry, Berlin Academic Press Publications, Germany (2001)
Matjie RH, Li ZS, Colin RW, French D, Fuel, 87(6), 857 (2008)
Marinov V, Marinov SPL, Lazarov L, Stefanova M, Fuel Process. Technol., 31, 181 (1992)
Kondratiev A, Jak E, Fuel., 80, 1989 (2001)
Ward CR, French D, Fuel, 85(16), 2268 (2006)