Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 7, 2012
Accepted November 3, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Preparation and characterization of dimethyldichlorosilane modified SiO2/PSf nanocomposite membrane
Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P. O. Box 9177948974, Mashhad, Iran 1Department of Chemical Engineering, Faculty of Engineering, Tarbiat Modaress University, Tehran, Iran
pakizeh@um.ac.ir
Korean Journal of Chemical Engineering, March 2013, 30(3), 751-760(10), 10.1007/s11814-012-0186-x
Download PDF
Abstract
Investigations on nanocomposite membranes imply that these hybrid materials recommend promising newgeneration membranes for gas separation in future. In this study, to investigate the effects of preparation parameters on the morphology and gas transport, various parameters including nanofiller content, surface modification and polymer concentration were considered. Two types of fumed silica nanoparticles (nonmodified and modified) were used to study the surface modification effect on agglomeration, void formation and gas separation properties of prepared membranes. Prepared nanocomposite membranes were characterized by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and tensile strength techniques. The gas permeabilities of hydrogen, methane, and carbon dioxide through pure PSf and nanocomposites were measured as a function of silica volume fraction, and permeability coefficients were determined using a variable pressure/constant volume experimental setup. Results showed that gas permeabilities increase with silica content, and proper H2/CH4 and H2/CO2 selectivities can be achieved with modified type of silica nanoparticles due to inhibition of particle agglomeration and bonding with polymer network. Hydrogen selectivity was improved by using 15 wt% polymer content instead of 9 wt%_x000D_
in preparation of nanocomposite membrane with same silica content. Gas permeation results indicated that increasing of feed pressure from 3 bar to 6 bar has a positive effect on selectivity of H2/CH4 but negligible effect on that of H2/CO2 for modified silica/PSf membrane.
Keywords
References
Shao L, Lau CH, Chung TS, Int. J. Hydrog. Energy., 34, 8716 (2009)
Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)
Huang Z, Li Y, Wen R, Teoh MM, Kulprathipanja S, J. Appl. Polym. Sci., 101(6), 3800 (2006)
Golemme G, Bruno A, Manes R, Muoio D, Desalination, 200(1-3), 440 (2006)
Li D, Yong Zhu H, Ratinac KR, Ringer SP, Wang H, Micropor. Mesopor. Mater., 126, 14 (2009)
Kim S, Pechar TW, Marand E, Desalination, 192(1-3), 330 (2006)
Kim S, Chen L, Johnson JK, Marand E, J. Membr. Sci., 294(1-2), 147 (2007)
Weng TH, Tseng HH, Wey MY, Int. J. Hydrog. Energy., 34, 8707 (2009)
Car A, Stropnik C, Peinemann KV, Desalination, 200(1-3), 424 (2006)
Zhang YF, Musseman IH, Ferraris JP, Balkus KJ, J. Membr. Sci., 313(1-2), 170 (2008)
Yang T, Xiao Y, Chung TS, Energy Environ. Sci., 4, 4171 (2011)
Vijay YK, Acharya NK, Wate S, Avasthi DK, Int. J. Hydrog.Energy, 28, 1015 (2003)
Shao L, Chung TS, Int. J. Hydrog. Energy., 34, 6492 (2009)
Bhardwaj V, Macintosh A, Sharpe ID, Gordeyev SA, Shilton SJ, N. Y. Acad. Sci., 984, 1 (2003)
Baker RW, Membrane technology and applications, 2nd Ed., John Wiley & Sons, Ltd., New York (2004)
Chung TS, Jiang LY, Li Y, Kulprathipanja S, Prog. Polym.Sci., 32, 483 (2007)
Brusatin G, Giustina GD, Guglielmi M, Casalboni M, Prosposito P, Schutzmann S, Roma G, Mater. Sci. Eng. C., 27, 1022 (2007)
Wang YW, Yen CT, Chen WC, Polymer, 46(18), 6959 (2005)
Koros WJ, Mahajan R, J. Membr. Sci., 175(2), 181 (2000)
Ahn JY, Chung WJ, Pinnau I, Guiver MD, J. Membr. Sci., 314(1-2), 123 (2008)
Sadeghi M, Semsarzadeh MA, Moadel H, J. Membr. Sci., 331(1-2), 21 (2009)
Zornoza B, Irusta S, Tellez C, Coronas J, Langmuir, 25(10), 5903 (2009)
Kono T, Hu YM, Masuda T, Tanaka K, Priestley RD, Freeman BD, Polym. Bull., 58(5-6), 995 (2007)
Gomes D, Nunes SP, Peinemann KV, J. Membr. Sci., 246(1), 13 (2005)
Wahab MFA, Ismail AF, Shilton SJ, Sep. Purif. Technol., 86, 41 (2012)
Bondi A, J. Phys. Chem., 68, 441 (1964)
Pechar TW, Kim S, Vaughan B, Marand E, Tsapatsis M, Jeong HK, Cornelius CJ, J. Membr. Sci., 277(1-2), 195 (2006)
Husain S, Koros WJ, J. Membr. Sci., 288(1-2), 195 (2007)
Li Y, Guan HM, Chung TS, Kulprathipanja S, J. Membr. Sci., 275(1-2), 17 (2006)
Duval JM, Kemperman AJ, Folkers B, Mulder MH, Desgrandchamps G, Smolders CA, J. Appl. Polym. Sci., 54(4), 409 (1994)
Xu Y, Li ZH, Fan WH, Wu D, Sun YH, Rong LX, Dong BZ, Appl. Surf. Sci., 225(1-4), 116 (2004)
Wang LJ, Lu AH, Xiao ZY, Ma JH, Li YY, Appl. Surf. Sci., 255(17), 7542 (2009)
Ficai D, Ficai A, Voicu G, Vasile BS, Guran C, Andronescu E, Materiale Plastice., 47, 24 (2010)
Elharati MA, Poly(vinyl alcohol)/polyamide thin-film composite membranes, Thesis for the degree of Master of Science in Engineering, Stellenbosch University (2009)
Dorosti F, Omidkhah MR, Pedram MZ, Moghadam F, Chem. Eng. J., 171(3), 1469 (2011)
Luo ML, Wen QZ, Liu JL, Liu HJ, Jia ZL, Chin. J. Chem. Eng., 19(1), 45 (2011)
Vatanpour V, Madaeni SS, Rajabi L, Zinadini S, Ashraf Derakhshan A, J. Membr. Sci., 401, 132 (2012)
Yampolskii Y, Pinnau I, Freeman BD, Materials science of membranes for gas and vapor separation, John Wiley & Sons, Ltd., New York (2006)
Matteucci S, Yampolskii Y, Freeman BD, Pinnau I, Transport of gases and vapors in glassy and rubbery polymers, In: Yampolskii Y, Pinnau I, Freeman BD (Eds.), Membranes for Gas and Vapor Separation, Wiley, Chichester, 6 (2006)
Cohen M, Turnbull T, J. Chem. Phys., 31, 1164 (1959)
Bondi A, Physical properties of molecular crystals, liquids and gases, John Wiley & Sons. Inc., New York (1968)
Stannett VT, J. Membr. Sci., 3, 97 (1978)
Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)
Huang Z, Li Y, Wen R, Teoh MM, Kulprathipanja S, J. Appl. Polym. Sci., 101(6), 3800 (2006)
Golemme G, Bruno A, Manes R, Muoio D, Desalination, 200(1-3), 440 (2006)
Li D, Yong Zhu H, Ratinac KR, Ringer SP, Wang H, Micropor. Mesopor. Mater., 126, 14 (2009)
Kim S, Pechar TW, Marand E, Desalination, 192(1-3), 330 (2006)
Kim S, Chen L, Johnson JK, Marand E, J. Membr. Sci., 294(1-2), 147 (2007)
Weng TH, Tseng HH, Wey MY, Int. J. Hydrog. Energy., 34, 8707 (2009)
Car A, Stropnik C, Peinemann KV, Desalination, 200(1-3), 424 (2006)
Zhang YF, Musseman IH, Ferraris JP, Balkus KJ, J. Membr. Sci., 313(1-2), 170 (2008)
Yang T, Xiao Y, Chung TS, Energy Environ. Sci., 4, 4171 (2011)
Vijay YK, Acharya NK, Wate S, Avasthi DK, Int. J. Hydrog.Energy, 28, 1015 (2003)
Shao L, Chung TS, Int. J. Hydrog. Energy., 34, 6492 (2009)
Bhardwaj V, Macintosh A, Sharpe ID, Gordeyev SA, Shilton SJ, N. Y. Acad. Sci., 984, 1 (2003)
Baker RW, Membrane technology and applications, 2nd Ed., John Wiley & Sons, Ltd., New York (2004)
Chung TS, Jiang LY, Li Y, Kulprathipanja S, Prog. Polym.Sci., 32, 483 (2007)
Brusatin G, Giustina GD, Guglielmi M, Casalboni M, Prosposito P, Schutzmann S, Roma G, Mater. Sci. Eng. C., 27, 1022 (2007)
Wang YW, Yen CT, Chen WC, Polymer, 46(18), 6959 (2005)
Koros WJ, Mahajan R, J. Membr. Sci., 175(2), 181 (2000)
Ahn JY, Chung WJ, Pinnau I, Guiver MD, J. Membr. Sci., 314(1-2), 123 (2008)
Sadeghi M, Semsarzadeh MA, Moadel H, J. Membr. Sci., 331(1-2), 21 (2009)
Zornoza B, Irusta S, Tellez C, Coronas J, Langmuir, 25(10), 5903 (2009)
Kono T, Hu YM, Masuda T, Tanaka K, Priestley RD, Freeman BD, Polym. Bull., 58(5-6), 995 (2007)
Gomes D, Nunes SP, Peinemann KV, J. Membr. Sci., 246(1), 13 (2005)
Wahab MFA, Ismail AF, Shilton SJ, Sep. Purif. Technol., 86, 41 (2012)
Bondi A, J. Phys. Chem., 68, 441 (1964)
Pechar TW, Kim S, Vaughan B, Marand E, Tsapatsis M, Jeong HK, Cornelius CJ, J. Membr. Sci., 277(1-2), 195 (2006)
Husain S, Koros WJ, J. Membr. Sci., 288(1-2), 195 (2007)
Li Y, Guan HM, Chung TS, Kulprathipanja S, J. Membr. Sci., 275(1-2), 17 (2006)
Duval JM, Kemperman AJ, Folkers B, Mulder MH, Desgrandchamps G, Smolders CA, J. Appl. Polym. Sci., 54(4), 409 (1994)
Xu Y, Li ZH, Fan WH, Wu D, Sun YH, Rong LX, Dong BZ, Appl. Surf. Sci., 225(1-4), 116 (2004)
Wang LJ, Lu AH, Xiao ZY, Ma JH, Li YY, Appl. Surf. Sci., 255(17), 7542 (2009)
Ficai D, Ficai A, Voicu G, Vasile BS, Guran C, Andronescu E, Materiale Plastice., 47, 24 (2010)
Elharati MA, Poly(vinyl alcohol)/polyamide thin-film composite membranes, Thesis for the degree of Master of Science in Engineering, Stellenbosch University (2009)
Dorosti F, Omidkhah MR, Pedram MZ, Moghadam F, Chem. Eng. J., 171(3), 1469 (2011)
Luo ML, Wen QZ, Liu JL, Liu HJ, Jia ZL, Chin. J. Chem. Eng., 19(1), 45 (2011)
Vatanpour V, Madaeni SS, Rajabi L, Zinadini S, Ashraf Derakhshan A, J. Membr. Sci., 401, 132 (2012)
Yampolskii Y, Pinnau I, Freeman BD, Materials science of membranes for gas and vapor separation, John Wiley & Sons, Ltd., New York (2006)
Matteucci S, Yampolskii Y, Freeman BD, Pinnau I, Transport of gases and vapors in glassy and rubbery polymers, In: Yampolskii Y, Pinnau I, Freeman BD (Eds.), Membranes for Gas and Vapor Separation, Wiley, Chichester, 6 (2006)
Cohen M, Turnbull T, J. Chem. Phys., 31, 1164 (1959)
Bondi A, Physical properties of molecular crystals, liquids and gases, John Wiley & Sons. Inc., New York (1968)
Stannett VT, J. Membr. Sci., 3, 97 (1978)