Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 4, 2012
Accepted January 23, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Simulation of computational fluid dynamics and comparison of cephalosporin C fermentation performance with different impeller combinations
Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China 1CSPC Hebei Zhongrun Pharmaceutical Co., Ltd., Shijiazhuang, Hebei 050041, China
Korean Journal of Chemical Engineering, May 2013, 30(5), 1097-1104(8), 10.1007/s11814-013-0010-2
Download PDF
Abstract
Cephalosporin C (CPC) fermentation by Acremonium chrysogenum is an extremely high oxygen-consuming process and oxygen transfer rate in a bioreactor directly affects fermentation performance. In this study, fluid dynamics and oxygen transfer in a 7 L bioreactor with different impellers combinations were simulated by computational fluid dynamics (CFD) model. Based on the simulation results, two impeller combinations with higher oxygen transfer rate (KLa) were selected to conduct CPC fermentations, aiming at achieving high CPC concentration and low_x000D_
accumulation of major by-product, deacetoxycephalosporin (DAOC). It was found that an impeller combination with a higher KLa and moderate shear force is the prerequisite for efficient CPC production in a stirred bioreactor. The best impeller combination, which installed a six-bladed turbine and a four-pitched-blade turbine at bottom and upper layers but with a shortened impellers inter-distance, produced the highest CPC concentration of 35.77 g/L and lowest DAOC/_x000D_
CPC ratio of 0.5%.
References
Kozma J, Karaffa L, J. Biotechnol., 48, 59 (1996)
Hilgendorf P, Diekmann H, Heiser V, Thoma M, Appl. Microbiol. Biotechnol., 27, 247 (1987)
Rollins MJ, Jensen SE, Wolfe S, Westlake DW, Enzyme Microb. Technol., 12, 40 (1990)
Zhou W, Holzhauer-Rieger K, Dors M, Schugerl K, Enzyme Microbiol. Technol., 14, 848 (1992)
Yang A, Dong HL, Liu G, J. Ind. Microbiol. Biotechnol., 39, 269 (2012)
Mishra P, Srivastava P, Kundu S, World J. Microbiol. Biotechnol., 21, 525 (2005)
Basch J, Chiang SJ, J. Ind. Microbiol. Biotechnol., 20, 344 (1998)
DeMondena JA, Gutierrez S, Velasco J, Fernandez FJ, Fachini RA, Galazzo JL, Hughes DE, Martin JF, Biotechnol., 11, 926 (1993)
Nienow AW, Appl. Mech. Rev., 51, 3 (1998)
Papagianni M, Biotechnol. Adv., 22, 189 (2004)
Metz B, deBruijn EW, van Suijdam JC, Biotechnol. Bioeng., 23, 149 (1981)
Nielsen J, Johansen CL, Jacobsen M, Krabben P, Villadsen J, Biotechnol. Prog., 11(1), 93 (1995)
Smith JJ, Lilly MD, Fox RI, Biotechnol. Bioeng., 35, 11 (1990)
Rahimi M, Kakekhani A, Alsairafi AA, Korean J. Chem. Eng., 27(4), 1150 (2010)
Dhanasekharan KM, Sanyal J, Jain A, Haidari A, Chem. Eng. Sci., 60(1), 213 (2005)
Raimondi MT, Moretti M, Cioffi M, Giordano C, Boschetti F, Lagana K, Pietrabissa R, Biorheology., 43, 215 (2006)
Santos-Moreau V, Brunet-Errard L, Rolland M, Chem. Eng.Sci., 207, 596 (2012)
Williams KA, Saini S, Wick TM, Biotechnol. Prog., 18(5), 951 (2002)
Marten MR, Wenger KS, Khan SA, Rheology mixing time, and regime analysis for a production-scale Aspergillus oryzae fermentation,in, A.W. Nienow (Ed.), Bioreactor and Bioprocess Fluid Dynamics, BHR Group, Edinburgh (1997)
Um BH, Hanley TR, Korean J. Chem. Eng., 25(5), 1094 (2008)
Ranade VV, Bourne JR, Joshi JB, Chem. Eng. Sci., 46, 1883 (1991)
Xia JY, Wang SJ, Zhang SL, Zhong JJ, Biochem. Eng.J., 38, 406 (2007)
Garcia-Ochoa F, Gomez E, Chem. Eng. Sci., 59(12), 2489 (2004)
Xia JY, Wang SJ, Liang SL, Zhong JJ, Biochem. Eng. J., 38, 406 (2008)
Kumaresan T, Joshi JB, Chem. Eng. J., 115(3), 173 (2006)
Abrardi V, Rovero G, Baldi G, Sicardi S, Conti R, Chem. Eng.Res. Des., 68, 516 (1990)
Ahmed SU, Ranganathan P, Pandey A, Sivaraman S, J. Biosci.Bioeng., 6, 588 (2010)
Tollnick C, Seidel G, Beyer M, Schguerl K, Adv. Biochem.Eng. Biotechnol., 86, 1 (2004)
Chiang SJ, J. Ind. Microbiol. Biotechnol., 31, 99 (2004)
Elander RP, Appl. Microbiol. Biotechnol., 61(5-6), 385 (2003)
Kim JH, Lim JS, Kim CH, Kim SW, Lett. Appl. Microbiol., 40, 307 (2005)
Matsumura M, Imanaka T, Yoshida T, Taguchi H, J. Ferment.Technol., 58, 197 (1980)
Basak S, Velayudhan A, Ladisch MR, Biotechnol. Prog., 11(6), 626 (1995)
Hilgendorf P, Diekmann H, Heiser V, Thoma M, Appl. Microbiol. Biotechnol., 27, 247 (1987)
Rollins MJ, Jensen SE, Wolfe S, Westlake DW, Enzyme Microb. Technol., 12, 40 (1990)
Zhou W, Holzhauer-Rieger K, Dors M, Schugerl K, Enzyme Microbiol. Technol., 14, 848 (1992)
Yang A, Dong HL, Liu G, J. Ind. Microbiol. Biotechnol., 39, 269 (2012)
Mishra P, Srivastava P, Kundu S, World J. Microbiol. Biotechnol., 21, 525 (2005)
Basch J, Chiang SJ, J. Ind. Microbiol. Biotechnol., 20, 344 (1998)
DeMondena JA, Gutierrez S, Velasco J, Fernandez FJ, Fachini RA, Galazzo JL, Hughes DE, Martin JF, Biotechnol., 11, 926 (1993)
Nienow AW, Appl. Mech. Rev., 51, 3 (1998)
Papagianni M, Biotechnol. Adv., 22, 189 (2004)
Metz B, deBruijn EW, van Suijdam JC, Biotechnol. Bioeng., 23, 149 (1981)
Nielsen J, Johansen CL, Jacobsen M, Krabben P, Villadsen J, Biotechnol. Prog., 11(1), 93 (1995)
Smith JJ, Lilly MD, Fox RI, Biotechnol. Bioeng., 35, 11 (1990)
Rahimi M, Kakekhani A, Alsairafi AA, Korean J. Chem. Eng., 27(4), 1150 (2010)
Dhanasekharan KM, Sanyal J, Jain A, Haidari A, Chem. Eng. Sci., 60(1), 213 (2005)
Raimondi MT, Moretti M, Cioffi M, Giordano C, Boschetti F, Lagana K, Pietrabissa R, Biorheology., 43, 215 (2006)
Santos-Moreau V, Brunet-Errard L, Rolland M, Chem. Eng.Sci., 207, 596 (2012)
Williams KA, Saini S, Wick TM, Biotechnol. Prog., 18(5), 951 (2002)
Marten MR, Wenger KS, Khan SA, Rheology mixing time, and regime analysis for a production-scale Aspergillus oryzae fermentation,in, A.W. Nienow (Ed.), Bioreactor and Bioprocess Fluid Dynamics, BHR Group, Edinburgh (1997)
Um BH, Hanley TR, Korean J. Chem. Eng., 25(5), 1094 (2008)
Ranade VV, Bourne JR, Joshi JB, Chem. Eng. Sci., 46, 1883 (1991)
Xia JY, Wang SJ, Zhang SL, Zhong JJ, Biochem. Eng.J., 38, 406 (2007)
Garcia-Ochoa F, Gomez E, Chem. Eng. Sci., 59(12), 2489 (2004)
Xia JY, Wang SJ, Liang SL, Zhong JJ, Biochem. Eng. J., 38, 406 (2008)
Kumaresan T, Joshi JB, Chem. Eng. J., 115(3), 173 (2006)
Abrardi V, Rovero G, Baldi G, Sicardi S, Conti R, Chem. Eng.Res. Des., 68, 516 (1990)
Ahmed SU, Ranganathan P, Pandey A, Sivaraman S, J. Biosci.Bioeng., 6, 588 (2010)
Tollnick C, Seidel G, Beyer M, Schguerl K, Adv. Biochem.Eng. Biotechnol., 86, 1 (2004)
Chiang SJ, J. Ind. Microbiol. Biotechnol., 31, 99 (2004)
Elander RP, Appl. Microbiol. Biotechnol., 61(5-6), 385 (2003)
Kim JH, Lim JS, Kim CH, Kim SW, Lett. Appl. Microbiol., 40, 307 (2005)
Matsumura M, Imanaka T, Yoshida T, Taguchi H, J. Ferment.Technol., 58, 197 (1980)
Basak S, Velayudhan A, Ladisch MR, Biotechnol. Prog., 11(6), 626 (1995)