ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 25, 2013
Accepted April 14, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Biological conversion of methane to methanol

Department of Chemical and Biological Engineering, Korea University, Anam-dong, 5-1, Sungbuk-gu, Seoul 136-713, Korea
leejw@korea.ac.kr
Korean Journal of Chemical Engineering, May 2013, 30(5), 977-987(11), 10.1007/s11814-013-0060-5
downloadDownload PDF

Abstract

The conversion of methane to methanol is important to economic utilization of natural/shale gas. Methanol is a valuable liquid fuel and raw material for various synthetic hydrocarbon products. Its industrial production is currently based on a two-step process that is energy-intensive and environmentally unfriendly, requiring high pressure and temperature. The biological oxidation of methane to methanol, based on methane monooxygenase activity of methanotrophic bacteria, is desirable because the oxidation is highly selective under mild conditions, but conversion rate and_x000D_ yield and stability of catalytic activity should be improved up to an industrially viable level. Since methanotrophic bacteria produce methanol as only a precursor of formaldehyde that is then used to synthesize various essential metabolites, the direct use of bacteria seems unsuitable for selective production of a large amount of methanol. There are two types of methane monooxygenase: soluble (sMMO) and particulate (pMMO) enzyme. sMMO consisting of three components (reductase, hydroxylase, and regulatory protein) features an (αβγ)2 dimer architecture with a di-iron active site in hydroxlase. pMMO, a trimer (pmoA, pmoB, and pmoC) in an α3β3γ3 polypeptide arrangement is a copper enzyme with a di-copper active site located in the soluble domain of pmoB subunit. Since the membrane transports electrons well and delivers effectively methane with increased solubility in the lipid bilayer, pMMO seems more rationally designed enzyme in nature than sMMO. The engineering/evolution/modification of MMO enzymes using various biological and chemical techniques could lead to an optimal way to reach the ultimate goal of technically and economically feasible and environmentally friendly oxidation of methane. For this, multidisciplinary efforts from chemical engineering, protein engineering, and bioprocess research sectors should be systematically combined.

References

BP Statistical Review of World Energy, June (2012)
Conti JJ, Holtberg PD, Beamon JA, Napolitano SA, Schaal AM, Turnure JT, Annual Energy Outlook 2012, U.S. Energy Information Administration, Washington DC (2012)
Periana RA, Taube DJ, Evitt ER, Loffler DG, Wentrcek PR, Voss G, Masuda T, Science., 259, 340 (1993)
Culpepper MA, Rosenzweig AC, Crit. Rev. Biochem. Mol., 47, 483 (2012)
Khoshtinat M, Amin NAS, Noshadi I, World Academy of Science, Eng. & Technol., 38, 354 (2010)
Olah GA, Angew. Chem. Int. Ed., 44, 2636 (2005)
Geerts JWMH, Hoebink JHBJ, van der Wiele K, Catal.Today., 6, 613 (1990)
Shilov AE, Shul'pin GB, Chem. Rev., 97(8), 2879 (1997)
Hunter NR, Gesser HD, Morton LA, Yarlagadda PS, Appl.Catal. A-gen., 57, 45 (1990)
Walker GS, Lapszewicz JA, Foulds GA, Catal. Today., 21, 519 (1994)
HALL TJ, HARGREAVES JSJ, HUTCHINGS GJ, JOYNER RW, TAYLOR SH, Fuel Process. Technol., 42(2-3), 151 (1995)
Taylor SH, Hargreaves JSJ, Hutchings GJ, Joyner RW, Lembacher CW, Catal. Today, 42(3), 217 (1998)
Benlounes O, Mansouri S, Rabia C, Hocine S, J. Nat. Gas.Chem., 17, 309 (2008)
Hammond C, Forde MM, Rahim MHA, Thetford A, He Q, Angew. Chem. Int. Ed., 51, 5129 (2012)
Rahim MHA, Forde MM, Jenkins RL, Hammond C, He Q, Angew. Chem. Int. Ed., 52, 1280 (2013)
Jones CJ, Taube D, Ziatdinov VR, Periana RA, Nielsen RJ, Oxgaard J, Goddard WA, Angew. Chem. Int. Ed., 116, 4726 (2004)
Gesser HD, Hunter NR, Prakash CB, Chem. Rev., 85, 235 (1985)
BHARADWAJ SS, SCHMIDT LD, Fuel Process. Technol., 42(2-3), 109 (1995)
Foster NR, Appl. Catal. A-gen., 19, 1 (1985)
Zhang Q, He D, Zhu Q, J. Nat. Gas. Chem., 17, 24 (2008)
Zhang Q, He D, Zhu Q, J. Nat. Gas. Chem., 12, 81 (2003)
Palkovits R, Antonietti M, Kuhn P, Thomas A, Schth F, Angew. Chem. Int. Ed., 48, 6909 (2009)
Casey PS, Mcallister T, Foger K, Ind. Eng. Chem. Res., 33(5), 1120 (1994)
Zhou LM, Xue B, Kogelschatz U, Eliasson B, Plasma Chem. Plasma Process., 18(3), 375 (1998)
Chen L, Zhang XW, Huang L, Lei LC, Chem. Eng. Process., 48(8), 1333 (2009)
Larkin DW, Zhou LM, Lobban LL, Mallinson RG, Ind. Eng. Chem. Res., 40(23), 5496 (2001)
Lieberman RL, Rosenzweig AC, Crit. Rev. Biochem. Mol., 39, 147 (2004)
Whittenbury R, Phillips KC, Wilkinson JF, J. Gen. Microbiol., 61, 205 (1970)
Hanson RS, Hanson TE, Microbiol. Rev., 60, 439 (1996)
Dedysh SN, Panikov NS, Liesack W, Groβkopf R, Zhou J, Tiedje JM, Science., 282, 281 (1998)
Khmelenina VN, Kalyuzhnaya MG, Starostina NG, Suzina NE, Trotsenko YA, Curr. Microbiol., 35(5), 257 (1997)
Sorokin DY, Jones BE, Kuenen JG, Extremophiles., 4, 145 (2000)
Bodrossy L, Kovaecs KL, McDonald IR, Murrell JC, Fems. Microbiol. Lett., 170, 335 (1999)
Bowman JP, McCammon SA, Skerratt JH, Microbiology., 143, 1451 (1997)
Vuilleumier S, Khmelenina VN, Bringel F, Reshetnikov AS, J. Bacteriol., 194, 551 (2012)
Stein LY, Yoon S, Semrau JD, DiSpirito AA, J. Bacteriol., 192, 6497 (2010)
Miyaji A, Method. Enzymol., 495, 211 (2011)
Gilbert B, McDonald IR, finch R, Stafford GP, Nielsen AK, Murrell JC, Appl. Environ. Microb., 66, 966 (2000)
Stein LY, Bringel F, DiSpirito AA, Han S, J. Bacteriol., 193, 2668 (2011)
McDonald IR, Uchiyama H, Kambe S, Yagi O, Murrell JC, Appl. Environ. Microb., 63, 1898 (1997)
Chen Y, Crombie A, Rahman MT, Dedysh SN, J. Bacteriol., 192, 3840 (2010)
Ward N, Larsen Ø, Sakwa J, Bruseth L, Plos. Biol., 2, 1617 (2004)
Colby J, Stirling DI, Dalton H, Biochem. J., 165, 395 (1977)
Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Muller J, Lippard SJ, Angew. Chem. Int. Ed., 40, 2782 (2001)
Balasubramanian R, Rosenzweig AC, Accounts. Chem. Res., 40, 573 (2007)
Hakemian AS, Rosenzweig AC, Annu. Rev. Biochem., 76, 223 (2007)
Nielsen AK, Gerdes K, Degn H, Murrell JC, Microbiology., 142, 1289 (1996)
Patel RN, Hou CT, Laskin AI, Felix A, Appl. Environ.Microb., 44, 1130 (1982)
Green J, Dalton H, J. Biol. Chem., 260, 15795 (1985)
Fox BG, Froland WA, Dege JE, Lipscomb JD, J. Biol.Chem., 264, 10023 (1989)
Friedle S, Reisner E, Lippard SJ, Chem. Soc. Rev., 39, 2768 (2010)
Tinberg CE, Lippard SJ, Accounts. Chem. Res., 44, 280 (2011)
Smith SM, Rawat S, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC, Biochemistry., 50, 10231 (2011)
Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC, Nature., 465, 115 (2010)
Dunfield PF, Yuryev A, Senin P, Smirnova AV, Nature., 450, 879 (2007)
Hyman MR, Wood PM, Biochem. J., 212, 31 (1983)
Scheutz C, Kjeldsen P, Bogner JE, Visscher AD, Gebert J, Hilger HA, Huber-Humer M, Spokas K, Waste. Manage. Res., 27, 409 (2009)
Jiang Y, Wilkins PC, Dalton H, Biochim. Biophys. Acta., 1163, 105 (1993)
Jiang Y, Dalton H, Biochim. Biophys. Acta., 1201, 76 (1994)
Yoshimoto T, Takahashi K, Nishimura H, Ajima A, Tamaura Y, Inada Y, Biotechnol. Lett., 6, 337 (1984)
Inada Y, Nishimura H, Takahashi K, Yoshimoto T, Saha AR. Saito Y, Biochem. Biophys. Res. Commun., 131, 532 (1984)
Takahashi K, Kodera Y, Yoshimoto T, Ajima A, Matsushima A, Inada Y, Biochem. Biophys. Res. Commun., 131, 532 (1985)
Matsushima A, Okada M, Inada Y, Febs Lett., 178, 275 (1984)
Gaertner HF, Puigserver AJ, Prot. Struct. Funct. Genet., 3, 130 (1988)
Babonneau MT, Jacquier R, Lazaro R, Viallefont P, Tetrahedron Lett., 30, 2787 (1989)
Pina C, Clark D, Blanch H, Biotechol. Techniques., 3, 333 (1989)
Gaertner HF, Puigserver AJ, Eur. J. Biochem., 181, 207 (1989)
Ljunger G, Adlercreutz P, Mattiasson B, Biocatalysis., 7, 279 (1993)
Abuchowski A, Davis FF, Biochim. Biophys. Acta., 578, 41 (1979)
Ferjancic A, Puigserver AJ, Gaertner HF, Biotechnol. Lett., 10, 101 (1988)
Lee H, Takahashi K, Kodera Y, Owada K, Tsuzuki T, Matsushima A, Inada Y, Biotechnol. Lett., 10, 407 (1988)
Souppe J, Urrutigoity M, Levesoue G, Biochim. Biophys. Acta., 957, 254 (1988)
Souppe J, Urrutigoity M, Levesoue G, New J. Chem., 12, 503 (1989)
Takahashi K, Ajima A, Yoshimoto T, Inada Y, Biochem. Biophys. Res. Commun., 125, 761 (1984)
Takahashi K, Nishimura H, Yoshimoto T, Saito Y, InadaY, Biochem. Biophys. Res. Commun., 121, 261 (1984)
Takahashi K, Nishimura H, Yoshimoto T, Okada M, Ajima A, Matsushima A, Tamaura Y, Saito Y, Inada Y, Biotechnol. Lett., 6, 765 (1984)
Urrutigoity M, Souppe J, Biocatalysis., 2, 145 (1989)
Wirth P, Souppe J, Tritsch D, Biellmann JF, Bioorganic Chem., 19, 133 (1991)
Yoshimoto T, Ritani A, Ohwada K, Takahashi K, Kodera Y, Matsushima A, Saito Y, Inada Y, Biochem. Biophys. Res. Commun., 148, 876 (1987)
Glieder A, Farinas ET, Arnold FH, Nature., 20, 1135 (2002)
Lee SJ, McCormick MS, Lippard SJ, Cho US, Nature, 494(7437), 380 (2013)
Choi DW, Antholine WE, Do YS, Semrau JD, Kisting CJ, Kunz RC, Campbell D, Rao V, Hartsel SC, DiSpirito AA, Microbiology., 151, 3417 (2005)
Yu SSF, Chen KHC, Tseng MYH, Wang YS, Tseng CF, Chen YJ, Huang DS, Chan SI, J. Bacteriol., 185, 5915 (2003)
Gou Z, Xing XH, Luo M, Jiang H, Han B, Wu H, Wang L, Zhang F, FEMS Microbiol. Lett., 263, 136 (2006)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로