Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 29, 2012
Accepted February 24, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Optimal oxygen concentration strategy through an isothermal oxidative coupling of methane plug flow reactor to obtain a high yield of C2 hydrocarbons
Amideddin Nouralishahi1 2
Hassan Pahlavanzadeh3†
Mohammadmehdi Choolaei2
Elaheh Esmaeili1
Amir Yadegari1 2
1Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P. O. Box 11155/4563 Tehran, Iran 2Carbon Nanotechnology and Energy Institute, Tehran, Iran 3Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
pahlavzh@modares.ac.ir
Korean Journal of Chemical Engineering, June 2013, 30(6), 1213-1221(9), 10.1007/s11814-013-0028-5
Download PDF
Abstract
An optimal oxygen concentration trajectory in an isothermal OCM plug flow reactor for maximizing C2 production was determined by the algorithm of piecewise linear continuous optimal control by iterative dynamic programming (PLCOCIDP). The best performance of the reactor was obtained at 1,085 K with a yield of 53.9%; while, at its maximum value, it only reached 12.7% in case of having no control on the oxygen concentration along the reactor. Also, the effects of different parameters such as reactor temperature, contact time, and dilution ratio (N2 /CH4) on the yield of C2 hydrocarbons and corresponding optimal profile of oxygen concentration were studied. The results showed an improvement of C2 production at higher contact times or lower dilution ratios. Furthermore, in the process of oxidative coupling of methane, controlling oxygen concentration along the reactor was more important than controlling the reactor temperature. In addition, oxygen feeding strategy had almost no effect on the optimum temperature of the reactor. Finally, using the optimal oxygen strategy along the reactor has more effect on ethylene selectivity compared to ethane.
Keywords
References
Thybaut JW, Sun JJ, Olivier L, Van Veen AC, Mirodatos C, Marin GB, Catal. Today, 159(1), 29 (2011)
Lu YP, Dixon AG, Moser WR, Ma YH, Chem. Eng. Sci., 55(21), 4901 (2000)
Traykova M, Davidova N, Tsaih JS, Weiss AH, Appl. Catal. A: Gen., 169(2), 237 (1998)
Onsager OT, Lodeng R, Soraker P, Anundskaas A, Helleborg B, Catal. Today., 4, 355 (1989)
Keller GE, Bhasin MM, J. Catal., 73, 9 (1982)
Sung JS, Choo KY, Kim TH, Greish A, Glukhov L, Finashina E, Kustov L, Appl. Catal. A: Gen., 380(1-2), 28 (2010)
Gholipour Z, Malekzadeh A, Hatami R, Mortazavi Y, Khodadadi AA, J. Nat. Gas Chem., 19, 35 (2010)
Ahari JS, Sadeghi MT, Pashne SZ, J. Taiwan Inst. Cheme.E., 42, 751 (2011)
Farooji NR, Vatanil A, Mokhtari S, J. Nat. Gas Chem., 19, 385 (2010)
Ghiasi M, Malekzadeh A, Hoseini S, Mortazavi Y, Khodadadi A, Talebizadeh A, J. Nat. Gas Chem., 20, 428 (2011)
Olivier L, Haag S, Mirodatos C, van Veen AC, Catal. Today., 142, 34 (2009)
Bhatia S, Thien CY, Mohamed AR, Chem. Eng. J., 148(2-3), 525 (2009)
Kundu PK, Zhang Y, Ray AK, Chem. Eng. Sci., 64(24), 5143 (2009)
Yaghobi N, Ghoreishy MH, J. Nat. Gas Chem., 18, 39 (2009)
Tye CT, Mohamed AR, Bhatia S, Chem. Eng. J., 87(1), 49 (2002)
Istadi, Amin NAS, Fuel Process. Technol., 87(5), 449 (2006)
Amin NAS, Pheng SE, Chem. Eng. J., 116(3), 187 (2006)
Kundu PK, Zhang Y, Ray AK, Chem. Eng. Sci., 64(19), 4137 (2009)
Rojnuckarin A, Floudas CA, Rabitz H, Yetter RA, Ind. Eng. Chem. Res., 35(3), 683 (1996)
Faliks A, Yetter RA, Floudas CA, Hall R, Rabitz H, J. Phys. Chem. A, 104(46), 10740 (2000)
Luus R, Okongwu ON, Chem. Eng. J., 75(1), 1 (1999)
Nouralishahi A, Pahlavanzadeh H, Daryan JT, Fuel Process. Technol., 89(7), 667 (2008)
Stansch Z, Kinetics for oxidative coupling of methane over La2O3/CaO catalyst, Ph.D Theses, Ruher University Bochum, Bochum (1997)
Chiappetta G, Clarizia G, Drioli E, Chem. Eng. J., 136(2-3), 373 (2008)
Karafyllis I, Daoutidis P, Comput. Chem. Eng., 26(7-8), 1087 (2002)
Daneshpayeh M, Khodadadi A, Mostoufi N, Mortazavi Y, Sotudeh-Gharebagh R, Talebizadeh A, Fuel Process. Technol., 90(3), 403 (2009)
Stansch Z, Mleczko L, Baerns M, Ind. Eng. Chem. Res., 36(7), 2568 (1997)
Santamaria J, Menendez M, Pena J, Barahona A, Catal. Today., 13, 353 (1992)
Kao YK, Lei L, Lin YS, Ind. Eng. Chem. Res., 36(9), 3583 (1997)
Androulakis IP, Reyes SC, AIChE J., 45(4), 860 (1999)
Su YS, Ying JY, Green WH, J. Catal., 218(2), 321 (2003)
Daneshpayeh M, Mostoufi N, Khodadadi A, Sotudeh-Gharebagh R, Mortazavi Y, Energy Fuels, 23(7), 3745 (2009)
Lu YP, Dixon AG, Moser WR, Ma YH, Chem. Eng. Sci., 55(21), 4901 (2000)
Traykova M, Davidova N, Tsaih JS, Weiss AH, Appl. Catal. A: Gen., 169(2), 237 (1998)
Onsager OT, Lodeng R, Soraker P, Anundskaas A, Helleborg B, Catal. Today., 4, 355 (1989)
Keller GE, Bhasin MM, J. Catal., 73, 9 (1982)
Sung JS, Choo KY, Kim TH, Greish A, Glukhov L, Finashina E, Kustov L, Appl. Catal. A: Gen., 380(1-2), 28 (2010)
Gholipour Z, Malekzadeh A, Hatami R, Mortazavi Y, Khodadadi AA, J. Nat. Gas Chem., 19, 35 (2010)
Ahari JS, Sadeghi MT, Pashne SZ, J. Taiwan Inst. Cheme.E., 42, 751 (2011)
Farooji NR, Vatanil A, Mokhtari S, J. Nat. Gas Chem., 19, 385 (2010)
Ghiasi M, Malekzadeh A, Hoseini S, Mortazavi Y, Khodadadi A, Talebizadeh A, J. Nat. Gas Chem., 20, 428 (2011)
Olivier L, Haag S, Mirodatos C, van Veen AC, Catal. Today., 142, 34 (2009)
Bhatia S, Thien CY, Mohamed AR, Chem. Eng. J., 148(2-3), 525 (2009)
Kundu PK, Zhang Y, Ray AK, Chem. Eng. Sci., 64(24), 5143 (2009)
Yaghobi N, Ghoreishy MH, J. Nat. Gas Chem., 18, 39 (2009)
Tye CT, Mohamed AR, Bhatia S, Chem. Eng. J., 87(1), 49 (2002)
Istadi, Amin NAS, Fuel Process. Technol., 87(5), 449 (2006)
Amin NAS, Pheng SE, Chem. Eng. J., 116(3), 187 (2006)
Kundu PK, Zhang Y, Ray AK, Chem. Eng. Sci., 64(19), 4137 (2009)
Rojnuckarin A, Floudas CA, Rabitz H, Yetter RA, Ind. Eng. Chem. Res., 35(3), 683 (1996)
Faliks A, Yetter RA, Floudas CA, Hall R, Rabitz H, J. Phys. Chem. A, 104(46), 10740 (2000)
Luus R, Okongwu ON, Chem. Eng. J., 75(1), 1 (1999)
Nouralishahi A, Pahlavanzadeh H, Daryan JT, Fuel Process. Technol., 89(7), 667 (2008)
Stansch Z, Kinetics for oxidative coupling of methane over La2O3/CaO catalyst, Ph.D Theses, Ruher University Bochum, Bochum (1997)
Chiappetta G, Clarizia G, Drioli E, Chem. Eng. J., 136(2-3), 373 (2008)
Karafyllis I, Daoutidis P, Comput. Chem. Eng., 26(7-8), 1087 (2002)
Daneshpayeh M, Khodadadi A, Mostoufi N, Mortazavi Y, Sotudeh-Gharebagh R, Talebizadeh A, Fuel Process. Technol., 90(3), 403 (2009)
Stansch Z, Mleczko L, Baerns M, Ind. Eng. Chem. Res., 36(7), 2568 (1997)
Santamaria J, Menendez M, Pena J, Barahona A, Catal. Today., 13, 353 (1992)
Kao YK, Lei L, Lin YS, Ind. Eng. Chem. Res., 36(9), 3583 (1997)
Androulakis IP, Reyes SC, AIChE J., 45(4), 860 (1999)
Su YS, Ying JY, Green WH, J. Catal., 218(2), 321 (2003)
Daneshpayeh M, Mostoufi N, Khodadadi A, Sotudeh-Gharebagh R, Mortazavi Y, Energy Fuels, 23(7), 3745 (2009)