Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 19, 2012
Accepted March 19, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Production of biodiesel from soybean oil catalyzed by attapulgite loaded with C4H5O6KNa catalyst
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China 1School of Urban Development and Environment Engineering, Shanghai Second Polytechnic University, Shanghai 201209, P. R. China
fxqiuchem@163.com
Korean Journal of Chemical Engineering, July 2013, 30(7), 1395-1402(8), 10.1007/s11814-013-0043-6
Download PDF
Abstract
Biodiesel is a green, safe, renewable alternative fuel, which is of great significance to solving the problem of energy shortage and environmental pollution. A series of solid base catalysts were prepared with the support of attapulgite (ATP), the load of C4H5O6KNa by impregnation method, and were used to catalyze transesterification of soybean oil with methanol to biodiesel. The activities of prepared catalysts were investigated compared to pure ATP. The optimal conditions for the catalyst preparation were investigated: molar ratio of Na : ATP was 1.7 : 1 and calcination temperature was 400 ℃. The prepared catalysts were characterized by several techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption measurements, X-ray diffraction and the Hammett indicator method. The prepared solid base catalyst can be separated from reaction system effectively and easily. The effects of the molar ratio of methanol to oil, reaction temperature and amount of catalyst on the biodiesel yield were investigated. The experimental results showed that a 22 : 1 molar ratio of methanol to oil, 10.0% of catalyst amount, 65 ℃ of reaction temperature and 3.0 h of reaction time gave the best results. The catalyst has longer lifetime and maintained sustained activity after being used for five cycles.
References
Dorado MP, Ballesteros E, Lopez FJ, Mittelbach M, Energy Fuels, 18(1), 77 (2004)
Shin J, Kim H, Hong SG, Kwon S, Na YE, Bae SH, Park WK, Kang KK, Korean J. Chem. Eng., 29(4), 460 (2012)
Yu MJ, Jo YB, Kim SG, Lim YK, Jeon JK, Park SH, Kim SS, Park YK, Korean J. Chem. Eng., 28(12), 2287 (2011)
Qiu FX, Li YH, Yang DY, Li XH, Sun P, Appl. Energy, 88(6), 2050 (2011)
Georgogianni KG, Kontominas MG, Pomonis PJ, Avlonitis D, Gergis V, Fuel Process. Technol., 89(5), 503 (2008)
Li YH, Qiu FX, Yang DY, Li XH, Sun P, Food Bioprod.Process., 90, 135 (2012)
Du W, Xu YY, Liu DH, Zeng J, J. Mol. Catal. B., 30, 125 (2004)
Ma FR, Hanna MA, Bioresour. Technol., 70(1), 1 (1999)
Kim HJ, Kang BS, Kim MJ, Park YM, Kim DK, Lee JS, Lee KY, Catal. Today, 93-95, 315 (2004)
Meher LC, Sagar DV, Nai SN, Renew. Sust. Energy Rev., 10, 248 (2006)
Georgogianni KG, Kontominas MG, Tegou E, Avlonitis D, Gergis V, Energy Fuels, 21(5), 3023 (2007)
Gryglewicz S, Bioresour. Technol., 70(3), 249 (1999)
Tanabe K, Holderich WF, Appl. Catal. A: Gen., 181(2), 399 (1999)
Corma A, Abd Hamid SB, Iborra S, Velty A, J. Catal., 234(2), 340 (2005)
Xie WL, Peng H, Chen LG, Appl. Catal. A: Gen., 300(1), 67 (2006)
Fan QH, Li P, Chen YF, Wu WS, J. Hazard. Mater., 192(3), 1851 (2011)
Forni L, Catal. Rev., 8, 65 (1974)
Zhu J, Chun Y, Wang Y, Xu Y, Catal. Today., 51, 103 (1995)
Wang K, Wang X, Li G, Micropor. Mesopor. Mater., 94, 325 (2006)
Li X, Lu G, Guo Y, Wang Y, Zhang Z, Liu X, Wang Y, Catal.Commun., 8, 1969 (2007)
Gorzawski H, Hoelderich WF, Appl. Catal. A: Gen., 179(1-2), 131 (1999)
Li YH, Qiu FX, Yang DY, Li XH, Sun P, Biomass Bioenerg., 35(7), 2787 (2011)
Qiu FX, Li YH, Yang DY, Li XH, Sun P, Bioresour. Technol., 102(5), 4150 (2011)
Noiroj K, Intarapong P, Luengnaruemitchai A, Jai-In S, Renew. Energy., 34, 1145 (2009)
Liu XJ, He HY, Wang YJ, Zhu SL, Catal. Commun., 8, 1107 (2007)
Shin J, Kim H, Hong SG, Kwon S, Na YE, Bae SH, Park WK, Kang KK, Korean J. Chem. Eng., 29(4), 460 (2012)
Yu MJ, Jo YB, Kim SG, Lim YK, Jeon JK, Park SH, Kim SS, Park YK, Korean J. Chem. Eng., 28(12), 2287 (2011)
Qiu FX, Li YH, Yang DY, Li XH, Sun P, Appl. Energy, 88(6), 2050 (2011)
Georgogianni KG, Kontominas MG, Pomonis PJ, Avlonitis D, Gergis V, Fuel Process. Technol., 89(5), 503 (2008)
Li YH, Qiu FX, Yang DY, Li XH, Sun P, Food Bioprod.Process., 90, 135 (2012)
Du W, Xu YY, Liu DH, Zeng J, J. Mol. Catal. B., 30, 125 (2004)
Ma FR, Hanna MA, Bioresour. Technol., 70(1), 1 (1999)
Kim HJ, Kang BS, Kim MJ, Park YM, Kim DK, Lee JS, Lee KY, Catal. Today, 93-95, 315 (2004)
Meher LC, Sagar DV, Nai SN, Renew. Sust. Energy Rev., 10, 248 (2006)
Georgogianni KG, Kontominas MG, Tegou E, Avlonitis D, Gergis V, Energy Fuels, 21(5), 3023 (2007)
Gryglewicz S, Bioresour. Technol., 70(3), 249 (1999)
Tanabe K, Holderich WF, Appl. Catal. A: Gen., 181(2), 399 (1999)
Corma A, Abd Hamid SB, Iborra S, Velty A, J. Catal., 234(2), 340 (2005)
Xie WL, Peng H, Chen LG, Appl. Catal. A: Gen., 300(1), 67 (2006)
Fan QH, Li P, Chen YF, Wu WS, J. Hazard. Mater., 192(3), 1851 (2011)
Forni L, Catal. Rev., 8, 65 (1974)
Zhu J, Chun Y, Wang Y, Xu Y, Catal. Today., 51, 103 (1995)
Wang K, Wang X, Li G, Micropor. Mesopor. Mater., 94, 325 (2006)
Li X, Lu G, Guo Y, Wang Y, Zhang Z, Liu X, Wang Y, Catal.Commun., 8, 1969 (2007)
Gorzawski H, Hoelderich WF, Appl. Catal. A: Gen., 179(1-2), 131 (1999)
Li YH, Qiu FX, Yang DY, Li XH, Sun P, Biomass Bioenerg., 35(7), 2787 (2011)
Qiu FX, Li YH, Yang DY, Li XH, Sun P, Bioresour. Technol., 102(5), 4150 (2011)
Noiroj K, Intarapong P, Luengnaruemitchai A, Jai-In S, Renew. Energy., 34, 1145 (2009)
Liu XJ, He HY, Wang YJ, Zhu SL, Catal. Commun., 8, 1107 (2007)