Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 30, 2012
Accepted May 4, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Detection of reactive oxygen species generated by microwave electrodeless discharge lamp and application in photodegradation of H2S
College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
Korean Journal of Chemical Engineering, July 2013, 30(7), 1423-1428(6), 10.1007/s11814-013-0074-z
Download PDF
Abstract
The photodegradation of hydrogen sulfide (H2S) was examined using a self-made microwave electrodeless discharge lamp (MEDL). The features of the MEDL had been tested. The results showed that the MEDL absorbed 18.3, 32.7 and 41.8W power at the microwave (MW) output power of 165, 330 and 660W, respectively. The intensity of the emitted light increased with increasing MW output power. The reactive oxygen species (ROS) generated by irradiated air and nitrogen were detected, respectively. It was illustrated that the irradiated air could generate a number of ROS, at least including 1O2 and ㆍOH. And the amount of ROS increased with increasing MW output power. In photodegradation of H2S process, the effects of MW output power and gas composition were investigated. The removal efficiency of H2S under nitrogen was obviously lower compared with that under air. The removal efficiency of H2S increased with increasing MW output power.
Keywords
References
Portela R, Sanchez B, Coronado JM, Candal R, Suarez S, Catal. Today, 129(1-2), 223 (2007)
Jeong GT, Lee GY, Cha JM, Park DH, Korean J. Chem. Eng., 25(1), 118 (2008)
Cho DR, Kim SY, Park DW, Mutin PH, Korean J. Chem. Eng., 26(2), 377 (2009)
Kato S, Hirano Y, Iwata M, Sano T, Takeuchi K, Matsuzawa S, Appl. Catal. B: Environ., 57(2), 109 (2005)
Chenar MP, Savoji H, Soltanieh M, Matsuura T, Tabe S, Korean J. Chem. Eng., 28(3), 902 (2011)
Kim SH, Kim IH, Lee WJ, Lee JH, Korean J. Chem. Eng., 25(5), 1131 (2008)
Canela MC, Alberici RM, Jardim WF, J. Photochem. Photobiol. A: Chem., 112, 73 (1998)
Jang JS, Li W, Oh SH, Lee JS, Chem. Phys. Lett., 425(4-6), 278 (2006)
Jang JS, Gyu Kim H, Borse PH, Lee JS, Int. J. Hydrog.Energy., 32, 4786 (2007)
Kataoka S, Lee E, Tejedor-Tejedor MI, Anderson MA, Appl. Catal. B: Environ., 61(1-2), 159 (2005)
Zhang XW, Wang YZ, Li GT, J. Mol. Catal. A-Chem., 237(1-2), 199 (2005)
Hong J, Sun C, Yang SG, Liu YZ, J. Hazard. Mater., 133(1-3), 162 (2006)
Gao ZQ, Yang SG, Na T, Sun C, J. Hazard. Mater., 145(3), 424 (2007)
Hong J, Ta N, Yang SG, Liu YZ, Sun C, Desalination, 214(1-3), 62 (2007)
CIrkva V, Zabov H, Hajek M, J. Photochem. Photobiol. A:Chem., 198, 13 (2008)
Literak J, Klan P, J. Photochem. Photobiol. A: Chem., 137, 29 (2000)
Klan P, Hajek M, Cirkva VR, J. Photochem. Photobiol. A:Chem., 140, 185 (2001)
Xia LY, Gu DH, Tan J, Dong WB, Hou HQ, Chemosphere., 71, 1774 (2008)
Wang J, Guo Y, Gao J, Jin X, Wang Z, Wang B, Li K, Li Y, Ultrason. Sonochem., 18, 1028 (2011)
Zhang Z, Xu Y, Ma X, Li F, Liu D, Chen Z, Zhang F, Dionysiou DD, J. Hazard. Mater., 209-210, 271 (2012)
Zhang X, Li G, Wang Y, Dyes Pigm., 74, 536 (2007)
Zhang XW, Wang YZ, Li GT, Qu JH, J. Hazard. Mater., 134(1-3), 183 (2006)
Han DH, Cha SY, Yang HY, Water Res., 38, 2782 (2004)
Umemura SI, Yumita N, Umemura K, Nishigaki R, Cancer Chemoth. Pharm., 43, 389 (1999)
Dai R, Shoemaker R, Farrens D, Han MJ, Kim CS, Song PS, J. Nat. Prod., 55, 1241 (1992)
Sachdev S, Davies KJA, Free Radical Biol. Med., 44, 215 (2008)
Linkous CA, Huang C, Fowler JR, J. Photochem. Photobiol. A: Chem., 168, 153 (2004)
Jeong GT, Lee GY, Cha JM, Park DH, Korean J. Chem. Eng., 25(1), 118 (2008)
Cho DR, Kim SY, Park DW, Mutin PH, Korean J. Chem. Eng., 26(2), 377 (2009)
Kato S, Hirano Y, Iwata M, Sano T, Takeuchi K, Matsuzawa S, Appl. Catal. B: Environ., 57(2), 109 (2005)
Chenar MP, Savoji H, Soltanieh M, Matsuura T, Tabe S, Korean J. Chem. Eng., 28(3), 902 (2011)
Kim SH, Kim IH, Lee WJ, Lee JH, Korean J. Chem. Eng., 25(5), 1131 (2008)
Canela MC, Alberici RM, Jardim WF, J. Photochem. Photobiol. A: Chem., 112, 73 (1998)
Jang JS, Li W, Oh SH, Lee JS, Chem. Phys. Lett., 425(4-6), 278 (2006)
Jang JS, Gyu Kim H, Borse PH, Lee JS, Int. J. Hydrog.Energy., 32, 4786 (2007)
Kataoka S, Lee E, Tejedor-Tejedor MI, Anderson MA, Appl. Catal. B: Environ., 61(1-2), 159 (2005)
Zhang XW, Wang YZ, Li GT, J. Mol. Catal. A-Chem., 237(1-2), 199 (2005)
Hong J, Sun C, Yang SG, Liu YZ, J. Hazard. Mater., 133(1-3), 162 (2006)
Gao ZQ, Yang SG, Na T, Sun C, J. Hazard. Mater., 145(3), 424 (2007)
Hong J, Ta N, Yang SG, Liu YZ, Sun C, Desalination, 214(1-3), 62 (2007)
CIrkva V, Zabov H, Hajek M, J. Photochem. Photobiol. A:Chem., 198, 13 (2008)
Literak J, Klan P, J. Photochem. Photobiol. A: Chem., 137, 29 (2000)
Klan P, Hajek M, Cirkva VR, J. Photochem. Photobiol. A:Chem., 140, 185 (2001)
Xia LY, Gu DH, Tan J, Dong WB, Hou HQ, Chemosphere., 71, 1774 (2008)
Wang J, Guo Y, Gao J, Jin X, Wang Z, Wang B, Li K, Li Y, Ultrason. Sonochem., 18, 1028 (2011)
Zhang Z, Xu Y, Ma X, Li F, Liu D, Chen Z, Zhang F, Dionysiou DD, J. Hazard. Mater., 209-210, 271 (2012)
Zhang X, Li G, Wang Y, Dyes Pigm., 74, 536 (2007)
Zhang XW, Wang YZ, Li GT, Qu JH, J. Hazard. Mater., 134(1-3), 183 (2006)
Han DH, Cha SY, Yang HY, Water Res., 38, 2782 (2004)
Umemura SI, Yumita N, Umemura K, Nishigaki R, Cancer Chemoth. Pharm., 43, 389 (1999)
Dai R, Shoemaker R, Farrens D, Han MJ, Kim CS, Song PS, J. Nat. Prod., 55, 1241 (1992)
Sachdev S, Davies KJA, Free Radical Biol. Med., 44, 215 (2008)
Linkous CA, Huang C, Fowler JR, J. Photochem. Photobiol. A: Chem., 168, 153 (2004)