ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 8, 2013
Accepted July 3, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Evaluation of solvent dearomatization effect in heavy feedstock thermal cracking to light olefin: An optimization study

1Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran 2Fuel Cell Institute, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia 3Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia 4Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
Korean Journal of Chemical Engineering, September 2013, 30(9), 1700-1709(10), 10.1007/s11814-013-0118-4
downloadDownload PDF

Abstract

Response surface method was used to study the effect of aromatic extraction of heavy feedstock in thermal cracking. N-methylpyrrolidone as the solvent performing dearomatization of feedstock was at different temperature and molar solvent to oil ratios. Temperature, flow rate and steam-to-hydrocarbon ratio were in the range of 1,053-1,143K, 1-2 g/g, and 0.75-1.2 g/min, respectively. From the CCD studies, the effects of flow rate and coil outlet temperature were the key factors influencing the yield of light olefins. Ethylene and propylene yields increased more than 10%_x000D_ by dearomatization. C5 + decreased by 13% on average. Finally, we obtained the single maximum yield of ethylene, propylene, and simultaneous maximum yields for untreated and raffinate.

References

Ren T, Patel M, Blok K, Energy, 31(4), 425 (2006)
Ghasemi M, Ismail M, Kamarudin SK, Saeedfar K, Daud WRW, Hassan SHA, Heng LY, Alam J, Oh SE, Appl.Energy., 1050 (2013)
Ghasemi M, Shahgaldi S, Ismail M, Kim BH, Yaakob Z, Wan Daud WR, Int. J. Hydrog. Energy., 13746 (2011)
Greene R, PD 19 (1) Vacuum Gas Oil Cracking (1975)
Suzuki T, Itoh M, Mishima M, Watanabe Y, Takegami Y, Fuel., 60, 961 (1981)
Van Camp CE, Van Damme PS, Froment GF, Industrial & Engineering Chemistry Process Design and Development., 23, 155 (1984)
Sie S, Senden M, Van Wechem H, Catal. Today., 8, 371 (1991)
Skraba FW, Method and apparatus for pyrolytically cracking hydrocarbons, in, Google Patents (1992)
Depeyre D, Flicoteaux C, Chardaire C, Industrial & Engineering Chemistry Process Design and Development., 24, 1251 (1985)
Rodil R, Carro A, Lorenzo R, Torrijos RC, Anal. Chem., 77, 2259 (2005)
Basily IK, Shafik AL, Sarhan AA, Mohamed MB, J. Nanotechnol., DOI:10.1155/2012/439531. (2012)
Zou R, Lou Q, Mo S, Feng S, Ind. Eng. Chem. Res., 32, 843 (1993)
Liu JC, Shen BX, Wang DQ, Dong JH, J. Petroleum Sci.Eng., 66, 156 (2009)
Gaile A, Somov V, Zalishchevskii G, Kaifadzhyan E, Koldobskaya L, Russian Journal of Applied Chemistry., 79, 590 (2006)
El-Gayar MS, Gohar GA, Ibrahim AM, Ibrahim HM, Aly AM, Fuel Process. Technol., 89(3), 254 (2008)
Kukovecz A, Mehn D, Nemes-Nagy E, Szabo R, Kiricsi I, Carbon., 43, 2842 (2005)
Sedighi M, Keyvanloo K, Towfighi J, Korean J. Chem. Eng., 27(4), 1170 (2010)
Senol S, Measurement., 36, 131 (2004)
Keyvanloo K, Towfighi J, Sadrameli S, Mohamadalizadeh A, J. Anal. Appl. Pyrol., 87, 224 (2010)
Sedighi M, Ghasemi M, Hassan SHA, Daud WRW, Ismail M, Abdallah E, World Journal of Microbiology and Biotechnology., 1 (2012)
Abghari SZ, Darian JT, Karimzadeh R, Omidkhah MR, Korean J. Chem. Eng., 25(4), 681 (2008)
Dicholkar DD, Gaikar VG, Kumar S, Natarajan R, J. Anal.Appl. Pyrol., DOI:10.1021/ie4003238. (2013)
Kopinke FD, Bach G, Zimmermann G, J. Anal. Appl. Pyrol., 27, 45 (1993)
Kumar P, Kunzru D, Industrial & Engineering Chemistry Process Design and Development., 24, 774 (1985)
Akhnazarova S, Kafarov V, Chem. Chem. Eng., Moscow: MIR.Publishers, Moscow (URSS) (1982)
Arteaga G, Li-Chan E, Vazquez-Arteaga M, Nakai S, Trends in Food Science & Technology., 5, 243 (1994)
Montgomery DC, Design and analysis of experiments, John Wiley & Sons Inc. (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로