Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 2, 2013
Accepted September 12, 2013
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effects of discrete source-sink arrangements on mixed convection in a square cavity filled by nanofluid
Mechanical Engineering Department, Shahrood University of Technology, P. O. Box 3619995161-316 Shahrood, Iran 1Mechanical Engineering Department, University of Sistan and Baluchestan, P. O. Box 98164-161 Zahedan, Iran
m.izadi@mech.tus.ac.ir, m.izadi.mec@gmail.com
Korean Journal of Chemical Engineering, January 2014, 31(1), 12-19(8), 10.1007/s11814-013-0176-7
Download PDF
Abstract
Laminar mixed convection of Al2O3/water nanofluid flow in a cavity in which the upper wall is moving from right to left has been studied numerically. Fifteen different arrangements of two discrete sources and four discrete sinks have been considered. This work shows when one source is located at the right side of the bottom wall and other one at the down half of the left wall, total heat transfer achieves its maximum value. The lowest heat transfer rate is achieved when more than two vortexes are created in the cavity (case 13 for Ri=1 and case 5 for Ri=100). In general, for cases with one overall vortex, the cavities which have separate sources induce better cooling and have higher Nu number.
References
Maxwell JC, A treatise on electricity and magnetism, Clarendon Press (1891)
Choi SUS , Enhancing thermal conductivity of fluid with nanoparticles, developments and applications of non-Newtonian flow, ASME FED 231/MD 66, 99 (1995)
Izadi M, Behzadmehr A, Jalali-Vahid D, Int. J. Therm. Sci., 48, 2119 (2009)
Izadi M, Shahmardan MM, Maghrebi MJ, Behzadmehr A, Chem. Eng. Commun. 723077., 200(7) (2013)
Ogut EB, Int. J. Therm. Sci., 48, 2063 (2009)
Lage JL, Bejan A, Int. J. Heat Mass Transf., 36(8), 2027 (1993)
Kwak HS, Hyun JM, J. Fluid Mech., 329, 65 (1996)
Kwak HS, Kuwahara K, Hyun JM, Int. J. Heat Mass Transf., 41(18), 2837 (1998)
Kazmierczak M,Chinoda Z, Int. J. Heat Mass Transf., 35, 1507 (1992)
Kazmierczak M, Muley A, Int. J. Heat Fluid Flow,, 15(1), 30 (1994)
Ghasemi B, Aminossadati SM, Int. J. Therm. Sci., 49, 1 (2010)
Alloui Z, Vasseur P, Reggio M, Int. J. Therm. Sci., 50(3), 385 (2011)
Pakravan HA, Yaghoubi M, Int. J. Therm. Sci., 50, 394 (2011)
Tiwari RK, Das MK, Int. J. Heat Mass Transf., 50(9-10), 2002 (2007)
Kahveci1 K, J. Heat Transfer., 062501-129, 132(6) (2010)
Muthtamilselvana M, Kandaswamya P, Lee J, Communications in Nonlinear Science and Numerical Simulation., 15(6), 1501 (2010)
Jahanshahi M, Hosseinizadeh SF, Alipanah M, Dehghani A, Vakilinejad GR, Int. Commun. Heat Mass Transfer., 37(6), 687 (2010)
Xuan Y, Li Q, Int. J. Heat Fluid Flow., 21, 58 (2000)
Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G, Int.J. Heat Mass Transf., 48, 1106 (2005)
Chon CH, Kihm KD, Lee SP, Choi SUS, Appl. Phys. Lett., 87, 1 (2005)
Masoumi N, Sohrabi N, BehzadmehrA, J. Phys. D: Appl.Phys., 42, 055501 (2009)
Khanafer K, Vafai K, Lightstone M, Int. J. Heat Mass Transf., 46(19), 3639 (2003)
Basak T, Roy S, Sharma PK, Pop I, Int. J. Therm. Sci., 48, 891 (2009)
Choi SUS , Enhancing thermal conductivity of fluid with nanoparticles, developments and applications of non-Newtonian flow, ASME FED 231/MD 66, 99 (1995)
Izadi M, Behzadmehr A, Jalali-Vahid D, Int. J. Therm. Sci., 48, 2119 (2009)
Izadi M, Shahmardan MM, Maghrebi MJ, Behzadmehr A, Chem. Eng. Commun. 723077., 200(7) (2013)
Ogut EB, Int. J. Therm. Sci., 48, 2063 (2009)
Lage JL, Bejan A, Int. J. Heat Mass Transf., 36(8), 2027 (1993)
Kwak HS, Hyun JM, J. Fluid Mech., 329, 65 (1996)
Kwak HS, Kuwahara K, Hyun JM, Int. J. Heat Mass Transf., 41(18), 2837 (1998)
Kazmierczak M,Chinoda Z, Int. J. Heat Mass Transf., 35, 1507 (1992)
Kazmierczak M, Muley A, Int. J. Heat Fluid Flow,, 15(1), 30 (1994)
Ghasemi B, Aminossadati SM, Int. J. Therm. Sci., 49, 1 (2010)
Alloui Z, Vasseur P, Reggio M, Int. J. Therm. Sci., 50(3), 385 (2011)
Pakravan HA, Yaghoubi M, Int. J. Therm. Sci., 50, 394 (2011)
Tiwari RK, Das MK, Int. J. Heat Mass Transf., 50(9-10), 2002 (2007)
Kahveci1 K, J. Heat Transfer., 062501-129, 132(6) (2010)
Muthtamilselvana M, Kandaswamya P, Lee J, Communications in Nonlinear Science and Numerical Simulation., 15(6), 1501 (2010)
Jahanshahi M, Hosseinizadeh SF, Alipanah M, Dehghani A, Vakilinejad GR, Int. Commun. Heat Mass Transfer., 37(6), 687 (2010)
Xuan Y, Li Q, Int. J. Heat Fluid Flow., 21, 58 (2000)
Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G, Int.J. Heat Mass Transf., 48, 1106 (2005)
Chon CH, Kihm KD, Lee SP, Choi SUS, Appl. Phys. Lett., 87, 1 (2005)
Masoumi N, Sohrabi N, BehzadmehrA, J. Phys. D: Appl.Phys., 42, 055501 (2009)
Khanafer K, Vafai K, Lightstone M, Int. J. Heat Mass Transf., 46(19), 3639 (2003)
Basak T, Roy S, Sharma PK, Pop I, Int. J. Therm. Sci., 48, 891 (2009)